Citation: | Gan Chunbiao, Lu Qishao. Asymptotic Solutions, Bifurcations and Chaosof Slow-Varying System[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 225-228. (in Chinese) |
1. Collinge I R, Ockendon J R. Transition resonance of a Duffing oscillator. SIAM J Appl Math, 1979, 15:350~357 2. Moslehy F A, Evan-Iwanowski R M. The effects of nonstationary processes on chaotic and regular responses of the Duffing oscillator. Int J Non-Linear Mech, 1991, 26:61~71 3. Rahman Z, Burton T D. Large amplitude primary and superharmonic resonance in the Duffing oscillator. J Sound and Vibration, 1986, 110:363~380 4. Jordan D W, Smith P. Non-linear ordinary differential equations. 2nd ed. Oxford:Clarendon Press, 1987 5. Wiggins S. Introduction to applied non-linear dynamical systems and chaos. 2nd ed.Berlin:Springer-Verlag, 1991 6. Suire G, Cederbaum G. Periodic and chaos behavior of viscoelastic non-linear (elastic) bars under harmonic excitations. Int J Mech Sci, 1995, 37:753~772
|