Volume 24 Issue 3
Mar.  1998
Turn off MathJax
Article Contents
Huang Hongxuan, Han Limin, Feng Yunchenget al. Performance Gradient Estimation for M/G/1 Queueing System Using Nonstandard Analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 327-330. (in Chinese)
Citation: Huang Hongxuan, Han Limin, Feng Yunchenget al. Performance Gradient Estimation for M/G/1 Queueing System Using Nonstandard Analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 327-330. (in Chinese)

Performance Gradient Estimation for M/G/1 Queueing System Using Nonstandard Analysis

  • Received Date: 16 Jan 1997
  • Publish Date: 31 Mar 1998
  • Estimating performance gradient is an important issue in the study of Discrete Event Dynamic Systems(DEDS). Because of discontinuous sample path, it is difficult to estimate performance gradient with respect to probability parameters by traditional perturbation analysis.A new kind of algorithm, which is based on Dirac δ-Function, is established by Nonstandard Analysis for M/G/1 queueing system performance gradient estimation with respect to a kind of probability parameter.Strongly consistency and asymptotically unbiasedness of new estimators are proved by means of integrating finite increment with infinitesimal one. New method uses special spline functions to approximate δ-Function in its implementation. It can estimate simultaneously sojourn time and busy period length gradient w.r.t probability parameter. Numerical results indicate that new estimators have lower relative errors and t-test value of unbiasedness.

     

  • loading
  • 1. Ho Y C,Cao X R.Perturbation ananlysis of discrete event dynamic systems.Boston:Kluwer Academic Publishers,1991 2. Suri R,Zazanis M A.Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/1 Queue. Management Science,1988,34(1):19~64 3. Shi L.Discontinuous perturbation analysis of discrete event dynamic system.IEEE Trans Automat Contr,1996,41(11):1676~1681 4. Kleinrock L.Queueing systems,Volume ⅠTheory.New York:John Wiley & Sons,1975.167~226 5. 黄乘规. 微积分和奇异积分的新理论. 天津:天津科学技术出版社,1991.34~52 6. 徐利治. 微积分大意. 北京:科学技术文献出版社,1989.65~84 7. 李邦河,李雅卿. 广义函数及其解析调和表示. 北京:国防工业出版社,1992.29~52 8. 李岳生,齐东旭. 样条函数方法. 北京:科学出版社,1979.25~28
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2168) PDF downloads(997) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return