Volume 47 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LIU Baolong, WANG Yong, LI Danping, et al. Block-diagonal projective representation for face recognition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 623-631. doi: 10.13700/j.bh.1001-5965.2020.0460(in Chinese)
Citation: LIU Baolong, WANG Yong, LI Danping, et al. Block-diagonal projective representation for face recognition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 623-631. doi: 10.13700/j.bh.1001-5965.2020.0460(in Chinese)

Block-diagonal projective representation for face recognition

doi: 10.13700/j.bh.1001-5965.2020.0460
Funds:

National Key R & D Program of China 2016YFE0207000

National Natural Science Foundation of China 61203137

National Natural Science Foundation of China 61401328

Natural Science Basic Research Program of Shaanxi 2014JQ8306

Natural Science Basic Research Program of Shaanxi 2015JM6279

More Information
  • Corresponding author: WANG Lei, E-mail: leiwang@mail.xidian.edu.cn
  • Received Date: 25 Aug 2020
  • Accepted Date: 04 Sep 2020
  • Publish Date: 20 Mar 2021
  • Most feature representation algorithms are susceptible to noise when mining the internal structure of the high-dimensional data. Meanwhile, their feature learning and classifier design are separated, resulting in the limited classification performance in practice. Aimed at this issue, a new feature representation method, Block-Diagonal Projective Representation (BDPR), is proposed in this paper. First, a weighted matrix is imposed on the coding coefficients of samples over each class. By using such local constraints to enhance the similarity between the coefficients and reduce the impact of noise on coefficient learning, the proposed BDPR can well maintain the internal data structure. Second, to closely correlate the data with their coding coefficients and reduce the difficulty of learning the representation coefficients, we construct a block-diagonal constraint to learn a discriminative projection. In this way, the sample representation coefficients can be obtained in the low-dimensional projected subspace, which contains more global structure information between samples and enjoys lower computational complexity. Finally, the representation learning and classifier learning are integrated into the same framework. By increasing the "label distance" between samples of different classes, BDPR updates the discriminative projection and classifier in an iterative manner. In this way, the most suitable classifier can be found for the current optimal feature representation, making the proposed algorithm automatically realize the classification task. The results of experiments on multiple benchmark face datasets show that BDPR has achieved better recognition performance, compared to traditional collaborative representation based classification and several mainstream subspace learning algorithms.

     

  • loading
  • [1]
    TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. doi: 10.1162/jocn.1991.3.1.71
    [2]
    FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Human Genetics, 1936, 7(2): 179-188. http://ci.nii.ac.jp/naid/10008962389
    [3]
    蒋晨琛, 霍宏涛, 冯琦. 一种基于PCA的面向对象多尺度分割优化算法[J]. 北京航空航天大学学报, 2020, 46(6): 1192-1203. doi: 10.13700/j.bh.1001-5965.2019.0398

    JIANG C C, HUO H T, FENG Q. An object-oriented multi-scale segmentation optimization algorithm based on PCA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1192-1203(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0398
    [4]
    李可, 刘祎, 杜少毅, 等. 基于PCA和WPSVM的航天器电特性识别方法[J]. 北京航空航天大学学报, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482

    LI K, LIU Y, DU S Y, et al. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0482
    [5]
    HE X F, YAN S C, HU Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. doi: 10.1109/TPAMI.2005.55
    [6]
    HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2005: 1208-1213.
    [7]
    SUGIYAMA M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007, 8(1): 1027-1061. doi: 10.5555/1248659.1248694
    [8]
    YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. doi: 10.1109/TPAMI.2007.250598
    [9]
    BENGIO Y, COURVILLE A, VINCENT P, et al. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. doi: 10.1109/TPAMI.2013.50
    [10]
    HUANG K, AVIYENTE S. Sparse representation for signal classification[C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2007: 609-616.
    [11]
    WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79
    [12]
    QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1): 331-341. doi: 10.1016/j.patcog.2009.05.005
    [13]
    LY N H, DU Q, FOWLER J E. Sparse graph-based discriminant analysis for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3872-3884. doi: 10.1109/TGRS.2013.2277251
    [14]
    ZHANG L, YANG M, FENG X C, et al. Sparse representation or collaborative representation: Which helps face recognition [C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 471-478.
    [15]
    LY N H, DU Q, FOWLER J E. Collaborative graph-based discriminant analysis for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2688-2696. doi: 10.1109/JSTARS.2014.2315786
    [16]
    YANG W K, SUN C Y, ZHENG W M. A regularized least square based discriminative projections for feature extraction[J]. Neurocomputing, 2016, 175: 198-205. doi: 10.1016/j.neucom.2015.10.049
    [17]
    ZHENG C Y, WANG N N. Collaborative representation with k-nearest classes for classification[J]. Pattern Recognition Letters, 2019, 117: 30-36. doi: 10.1016/j.patrec.2018.11.005
    [18]
    LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463-1474. doi: 10.1109/TGRS.2014.2343955
    [19]
    KAYA M, BILGE H Ş. Deep metric learning: A survey[J]. Symmetry, 2019, 11(9): 1066. doi: 10.3390/sym11091066
    [20]
    ZHONG G Q, WANG L N, LING X, et al. An overview on data representation learning: From traditional feature learning to recent deep learning[J]. The Journal of Finance and Data Science, 2016, 2(4): 265-278. doi: 10.1016/j.jfds.2017.05.001
    [21]
    ZHOU X Z, JIN K, XU M, et al. Learning deep compact similarity metric for kinship verification from face images[J]. Information Fusion, 2019, 48: 84-94. doi: 10.1016/j.inffus.2018.07.011
    [22]
    CHU R H, SUN Y F, LI Y D, et al. Vehicle re-identification with viewpoint-aware metric learning[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8282-8291.
    [23]
    车畅畅, 王华伟, 倪晓梅, 等. 基于深度学习的航空发动机故障融合诊断[J]. 北京航空航天大学学报, 2018, 44(3): 621-628. doi: 10.13700/j.bh.1001-5965.2017.0197

    CHE C C, WANG H W, NI X M, et al. Fault fusion diagnosis of aero-engine based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 621-628(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0197
    [24]
    WEN J, ZHANG B, XU Y, et al. Adaptive weighted nonnegative low-rank representation[J]. Pattern Recognition, 2018, 81: 326-340. doi: 10.1016/j.patcog.2018.04.004
    [25]
    FANG X Z, TENG S H, LAI Z H, et al. Robust latent subspace learning for image classification[J]. IEEE Transactions on Neural Networks, 2018, 29(6): 2502-2515. doi: 10.1109/TNNLS.2017.2693221
    [26]
    BAILLY-BAILLIÉRE E, BENGIO S, BIMBOT F, et al. The BANCA database and evaluation protocol[C]//International Conference on Audio- and Video-based Biometric Person Authentication. Berlin: Springer, 2003: 625-638.
    [27]
    GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. doi: 10.1109/34.927464
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views(501) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return