Huang Jun, Wu Zhe, Zhu Rongchanget al. Optimized Collocation of Combat Aircraft Weapon Systems for Air Force[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 546-549. (in Chinese)
Citation: Wang Xinlong, Shen Liangliang, Ma Shanet al. Transfer alignment of strapdown inertial navigation systems on rolling bases[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 728-731. (in Chinese)

Transfer alignment of strapdown inertial navigation systems on rolling bases

  • Received Date: 04 Apr 2008
  • Publish Date: 30 Jun 2009
  • In the process of initial alignment for rolling bases, the accuracy of a model and the observability and observability degree of states are important facts to confirm the filtering effect. A fast and precise alignment method for rolling bases was discussed. Considering time-delay between the master and slave inertial navigation system, a precise transfer alignment model of "velocity + pose" matching was established. The observability analysis of piece-wise constant system (PWCS) and singular value decomposition of observability degree were combined, the observability degree of strapdown inertial navigation system (SINS) -s states were analyzed quantificationally, and the optimal estimation of SINS can be received at the three axes rolling state. Consequently, the SINS can achieve the optimal speed and precision of initial alignment performance. The choice of optimal maneuvers trajectory for carriers and the matching mode of transfer alignment can be gained for alignment of carrier weapons. The simulation results validate the efficiency of this method.

     

  • [1] 张静.SINS空中初始对准滤波器的设计[J].上海航天, 2000(6): 34-38 Zhang Jing. Design of the filter for inertial alignment on flying plane of SINS[J]. Aerospace Shanghai, 2000(6): 34-38(in Chinese)[2] Spalding K. An efficient rapid transfer alignment filter .AIAA-92-4598-CP,1992: 1276-1286[3] LimYou-Chol, Joon Lyou. An error compensation method for transfer alignment . USA:IEEE,2001 .[4] Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant system-part I: theory[J].IEEE Transactions on Aerospace and Electronics Systems, 1992, 28(4): 1056-1067[5] 程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究[J].东南大学学报,1997,27(6):6-11 Cheng Xianghong,Wan Dejun,Zhong Xun.Study on observability and its degree of strapdown inertial navigation system[J].Journal of Southeast University,1997,27(6):6-11(in Chinese)
  • Relative Articles

    [1]PIAN Rong, YANG Fan, ZHANG Ling, LIU Feng-rui, WANG Lin-juan, ZHAO Li-bin. Failure mode study of composite laminated plates under compression-shear loading[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0084
    [2]REN W,LI J,WANG T Y,et al. Meshing theory and performance analysis of point-contact conjugate involute worm gear pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3183-3195 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0778.
    [3]ZHANG Luheng, WANG Wenyu, DING Dandan. A Hierarchical Rate Control Method for End-to-End Image Compression[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0461
    [4]CHANG Z N,HU M H,ZHANG Y,et al. A multi-objective optimal control trajectory optimization method for aircraft under wind influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3521-3531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0836.
    [5]ZHAO Yifei, GU Ruijia, REN Xinhui. Method for small unmanned aerial vehicles path planning considering urban low-altitude wind fields[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0281
    [6]CENG Sheng-fu, LIANG Hao-quan, WANG Yan, SUN Kang-wen, ZHONG Zi-hong. status assessment of stratospheric airship based on improved combination weighting and cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0713
    [7]PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0497.
    [8]WEN Bo-qun, MIAO Jing-gang, LU Ying, ZHOU Shu-yu. Short-term prediction of stratospheric wind field based on POD-LSTM network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0608
    [9]SHE W Q,LIU Y B,CHEN B Y. Altitude control strategy for high-aspect-ratio wings with active morphing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1746-1752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0612.
    [10]BAI F C,YANG X X,DENG X L,et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2354-2366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0629.
    [11]REN D J,XU S H,WANG S P,et al. Modeling and solution method of oil film dynamic coupling for spherical port pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2771-2779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0724.
    [12]ZHANG C,ZHUANG K,YU P,et al. Process control net modelling and analyzing for satellite test and evaluation in launch site[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1948-1955 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0628.
    [13]YUAN M Y,ZHOU J H,HAO Y,et al. Design of contactless power supply system for stratospheric airship anemometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):972-980 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0344.
    [14]QU Y,WANG S,ZENG L C,et al. Path planning algorithm for airborne pseudolites installed on stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1071-1082 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0385.
    [15]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [16]ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0452.
    [17]ZHAI J Q,YANG X X,DENG X L,et al. Global path planning of stratospheric aerostat in uncertain wind field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1116-1126 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0380.
    [18]ZHANG J L,YANG X X,DENG X L,et al. Altitude control of stratospheric aerostat based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2062-2070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0622.
    [19]YANG Xi-xiang, HOU Zhong-xi, HAN Yu, YANG Yang. Multifactor effect on output performance of solar array for stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0651
    [20]LONG Yuan, DENG Xiaolong, YANG Xixiang, HOU Zhongxi. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
  • Cited by

    Periodical cited type(2)

    1. 郑志东,刘宁,韩笑雪,戴秋敏. 临近空间飞艇保形升空过程热运动特性研究. 航天返回与遥感. 2023(02): 24-32 .
    2. 翟嘉琪,杨希祥,邓小龙,龙远,张经伦,柏方超. 不确定风场下平流层浮空器全局路径规划. 北京航空航天大学学报. 2023(05): 1116-1126 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3693) PDF downloads(1332) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return