Citation: | Wang Huiwen, Guo Lijuan. Polynomial regression modeling based on Gram-Schmidt process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1349-1352. (in Chinese) |
[1] Wold S,Martens H,Wold H.The multivariate calibration problem in chemistry solved by the PLS method[M]. Heidelberg: Springer-Verlag, 1983 [2] Tenenhaus M. L’approche PLS[M]. Revue de Statistique Appliquée, 1998 [3] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社, 1999:93-107 Wang Huiwen. Partial least-squaresregression-method and applications[M]. Beijing: National Defense Industry Press,1997,93-107(in Chinese) [4] 付凌晖,王惠文.多项式回归的建模方法比较研究[J].数理统计与管理, 2004, 23(1): 48-52 Fu Linghui,Wang Huiwen. A comparative reseach of polynomial regression modelling methods[J].Application of Statistics and Management, 2004, 23(1): 48-52(in Chinese) [5] Jain S K,Gunawarddena A D.Linear algebra: an interactive approach[M]. Bejing:China Machine Press,2003 [6] 内特,沃塞曼,库特纳. 应用线性回归模型[M].张勇,王国明,赵秀珍译. 北京:中国统计出版社, 1990 Neter,Wasserman,Kutner. Applied linear regression model[M]. Translated by Zhang Yong, Wang Guoming,Zhao Xiuzhen.Beijing:China Statistics Press,1990(in Chinese) [7] 王惠文,陈梅玲,Gilbert Saporta. Gram-Schmidt回归及在刀具磨损预报中的应用[J].北京航空航天大学学报,2008,34(6): 729-733 Wang Huiwen,Chen Meiling,Gilbert Saporta.Gram-Schmidt regression and application in cutting tool abrasion prediction[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(6): 729-733(in Chinese)
|