Volume 34 Issue 06
Jun.  2008
Turn off MathJax
Article Contents
Wang Huiwen, Wang Jie, Huang Haijunet al. Modeling strategy of principle component regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(06): 661-664. (in Chinese)
Citation: Wang Huiwen, Wang Jie, Huang Haijunet al. Modeling strategy of principle component regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(06): 661-664. (in Chinese)

Modeling strategy of principle component regression

  • Received Date: 15 May 2007
  • Publish Date: 30 Jun 2008
  • When the mechanism and the reason of failure of the classical principal components regression were analyzed, a new strategy of PCR modeling was presented as:①deriving all components and modeling with all these components; ②exclude all components which were not significant in t-test; ③modeling with the components which were significant in t-test. Proved the regression coefficient and the t-test value of any principal component were unrelated to the other principal components. It was insured that, when applying backward-delete variables law, all the variables which were not significant in t-test test could be deleted together at the same time. It was not necessary to delete them gradually. A simulation study was given to prove the validity of the strategy. The research indicates that the suggested strategy can effectively derive components which are explainable to dependent variables. Modeling under the condition of multicollinearity is enabled, and all the independent variables can be included. The process of suggested variables selection method is simple, and the accumulated error is smaller than that of partial least-squares regression.

     

  • loading
  • [1] Hoerl A E, Kennard R W. Ridge regression:biased estimation for non-orthogonal problems[J]. Teehno Metrics, 1970, 12:55-68 [2] Hoerl A E, Kennard R W. Ridge regression:application for non-orthogonal problems[J]. Teehno Metrics, 1970, 12:69-72 [3] Wold S, Albano C, Dunn M, et al. Pattern regression finding and using regularities in multivariate data[M]. London:Analysis Applied Science Publication, 1983 [4] Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method Ruhe A, K gstr m B. Proc Conf Matrix Pencils Lectures Notes in Mathematics. Heidelberg:Springer-Verlag, 1983 [5] Tenenhaus M, L-approche P L S. Revue de Statistique Appliqu e[M]. Paris :Springer-Verlag,1999 [6] Kutner, Nachtsheim, Neter. Applied linear regression models[M]. Fourth Edition. New York:McGraw-Hill,2005 [7] 王惠文.PLSR方法及其应用[M].北京:国防工业出版社,1999 Wang Huiwen. Partial least-squares regression method and application [M]. Beijing:National Defence Industry Press,1999(in Chinese) [8] Ergon R. Reduced PCR/PLSR models by subspace projections[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81:68-73 [9] Bjrn-Helge M,Henrik R C. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) [J].Journol of Chemometrics, 2004, 18:422-429 [10] Ergon R. Constrained numerical optimization of PCR/PLSR predictors [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 65:293-303 [11] 任若恩,王惠文.多元统计数据分析——理论、方法、实例[M]. 北京:国防工业出版社, 1997 Ren Ruoen, Wang Huiwen. Statistical analysis on multivariate data-theories, methods, case studies[M]. Beijing:National Defence Industry Press, 1997(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(12114) PDF downloads(3959) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return