Citation: | Wang Huiwen, Wang Jie, Huang Haijunet al. Modeling strategy of principle component regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(06): 661-664. (in Chinese) |
[1] Hoerl A E, Kennard R W. Ridge regression:biased estimation for non-orthogonal problems[J]. Teehno Metrics, 1970, 12:55-68 [2] Hoerl A E, Kennard R W. Ridge regression:application for non-orthogonal problems[J]. Teehno Metrics, 1970, 12:69-72 [3] Wold S, Albano C, Dunn M, et al. Pattern regression finding and using regularities in multivariate data[M]. London:Analysis Applied Science Publication, 1983 [4] Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method Ruhe A, K gstr m B. Proc Conf Matrix Pencils Lectures Notes in Mathematics. Heidelberg:Springer-Verlag, 1983 [5] Tenenhaus M, L-approche P L S. Revue de Statistique Appliqu e[M]. Paris :Springer-Verlag,1999 [6] Kutner, Nachtsheim, Neter. Applied linear regression models[M]. Fourth Edition. New York:McGraw-Hill,2005 [7] 王惠文.PLSR方法及其应用[M].北京:国防工业出版社,1999 Wang Huiwen. Partial least-squares regression method and application [M]. Beijing:National Defence Industry Press,1999(in Chinese) [8] Ergon R. Reduced PCR/PLSR models by subspace projections[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81:68-73 [9] Bjrn-Helge M,Henrik R C. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) [J].Journol of Chemometrics, 2004, 18:422-429 [10] Ergon R. Constrained numerical optimization of PCR/PLSR predictors [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 65:293-303 [11] 任若恩,王惠文.多元统计数据分析——理论、方法、实例[M]. 北京:国防工业出版社, 1997 Ren Ruoen, Wang Huiwen. Statistical analysis on multivariate data-theories, methods, case studies[M]. Beijing:National Defence Industry Press, 1997(in Chinese)
|