Liu Lin, Chen Zongji, Tang Qiang, et al. Method based on μ-analysis techniques for the clearance of flight control laws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(02): 141-144. (in Chinese)
Citation: Liu Lin, Chen Zongji, Tang Qiang, et al. Method based on μ-analysis techniques for the clearance of flight control laws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(02): 141-144. (in Chinese)

Method based on μ-analysis techniques for the clearance of flight control laws

  • Received Date: 01 Mar 2006
  • Publish Date: 28 Feb 2007
  • The clearance of modern flight control laws to take into account the m any uncertainties has become a great challenge to engineers and researchers, and traditional grid-based methods have gradually been incompetent for this task. A method based on μ-analysis techniques was used to solve this very difficult problem. The aircraft model and flight control law used in the prese nt study is a twin-engine fighter with a robust inverse dynamics estimatio n(RIDE) controller. Our approach was applied to evaluate a linear stability margi n criterion currently widely used by the aerospace industry. Using the linear fr actio nal transformation based uncertainty model developed from the nonlinear aircraft model, and a fictitious multiplicative input uncertainty representation of the criterion, stability robustness analysis results were presented for the flight co ntrol law. Compared with traditional grid-based ones, the μ-analysis based met ho d has two obvious advantages which provide more rigorous and efficient in the pr esence of multiple sources of parametric uncertainty. One is the points between grids can be cleared, the other is there exists no "disaster of dimension" pro blems.

     

  • [1] Fielding C, Varga A, Bennani S, et al. Advanced techniq ues for clearance of flight control laws[M]. Berlin:Springer-Verlag, 2002 [2] Magni J F, Bennani S, Terlouw J. Robust flight control:a design challeng e[M]. London:Springer-Verlag, 1997 [3] Bates D G, Kureemun R, Mannchen T. Improved clearance of a flight contro l law using μ-analysis techniques[J]. Journal of Guidance, Control, and Dyna mics, 2003, 26(6):869-884 [4] Deodhare G, Patel V V. A "modern" look at gain and phase margins:an H /μ approach AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998:325-335 [5] Balas G J, Doyle J C. μ-analysis and synthesis toolbox user′s guide (v ersion 3.06)[M]. Natick, MA:MUSYN Inc and the MathWorks Inc, 2001
  • Relative Articles

    [1]WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0043.
    [2]ZHAO Yuyu, WANG Baocheng, HUANG Tingshuang, JIA Zhongzhen, DU Xiaowei, XU Guoning. Research on Model Predictive Control Strategy for Buck-Boost Converter of Near-Space Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0860
    [3]CAI Y,SI Y H,WANG Y Z,et al. Analysis and control of influencing factors of cross coupling of flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):141-151 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0968.
    [4]GUO F,HAN W,LIU Y J,et al. Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):795-805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0129.
    [5]LI K,SHEN Z G,ZHANG X J. Study on uncertainties of graphene tag antenna by screen printing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):857-864 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0159.
    [6]LIU W,YAN S,WANG X B,et al. Consensus control of multi-agent systems with uncertain communication networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1463-1473 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0518.
    [7]FENG Yu-xuan, HUO Ying-yuan, LI Jun-jie. Design of multiple-input/multiple-output control law for active flutter suppression of flying-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0144
    [8]DING Jianli, LIU Hu, CAO Weidong. Quantitative model of uncertainty for prediction of flight transit time[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0445
    [9]PANG F Q,ZHAO H F,KANG Y Y. Uncertainty estimation fused end-to-end video event detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3759-3770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0897.
    [10]LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624.
    [11]WANG Zhi-hui, XIANG Zhi-ning, GAO Ping. Research on Uncertainty in Kill Effectiveness of Anti-Ship Ballistic Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0774
    [12]LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234.
    [13]TIAN M Y,SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2514-2523 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0640.
    [14]LIU Ting, LIU Xiao, GUO Lei, CENG Lei, GUO Yijun. Research on Uncertainty Analysis Methods for Heat Transfer Ablation in Carbon-Based Materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0301
    [15]CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943.
    [16]ZHANG J,ZHANG Z R,HONG Z C,et al. Robust optimization of aviation logistics network in context of COVID-19 pandamic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2218-2226 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0664.
    [17]DONG X X,YUE Z J,WANG Z,et al. Uncertainty lightweight design of sandwich structure of rocket fairing cone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):625-635 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0267.
    [18]KANG K,WANG Z P,FANG K,et al. Impact of IFB uncertainty on dual-frequency code carrier divergence monitoring[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2463-2472 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0649.
    [19]WANG Guang-han, SONG Chen, YANG Chao. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0647
    [20]ZHANG Wei, WANG Qiang, LU Jiachen, YAN Chao. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3268) PDF downloads(449) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return