Wu Xingming, Chen Weihai, Yu Shouqian, et al. Development of PCI-based multi-axis controller[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 112-116. (in Chinese)
Citation: Jin Jing, Song Ningfang, Li Min, et al. Three-cluster fiber-optic gyroscope for satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11): 1385-1389. (in Chinese)

Three-cluster fiber-optic gyroscope for satellite

  • Received Date: 30 Apr 2006
  • Publish Date: 30 Nov 2006
  • Effects of space environment upon fiber-optic gyroscope(FOG) performance were studied, and a new-style assemble of 3-axis fiber optic-gyroscope used in satellite was designed. Simulation experiment was finished to analyze the effects of space radiation, vacuum environment and temperature cycle upon FOG. And the main mechanism of the effects of space environment upon FOG was obtained by analyzing the experimental data. A bias error model was developed by using least squares filtering, and a scale factor error model was developed by using look-up table. Both models were implemented in field programmed gate array (FPGA) for compensation of bias stability, which reduces the bias stability to 0.1(°)/h. The reasons for dead band in space are analyzed, and the error of dead band is to be suppressed by using the cycle phase modulation. During the design of the fiber optic gyroscope, the technology of multiplexing and redundancy of the light source, and the protective measures in space as well as the fault diagnosis in orbit are designed and implemented.

     

  • [1] Lefevre H C. The fiber-optic gyroscope[M]. London:Artech House, 1993 [2] Faussot N. Fiber optic gyros for space use[M]. France:Photonetics, 1999 [3] Shupe D M. Thermally induced nonreciprocity in the fiber optic interferometers[J]. Appl Opt, 1980, 19:654-655 [4] Spahlinger G. Error compensation via signal correlation in high precision closed-loop fiber optic gyros Rric Udd, Lefevre H C, Kazuo Hotate, et al. Fiber Optic Gyros:20th Anniversary Conference. Denver:SPIE,1996:218-227 [5] Pavlath G A. Closed-loop fiber optic gyros Rric Udd, Lefevre H C, Kazuo Hotate, et al. Fiber Optic Gyros:20th Anniversary Conference. Denver:SPIE,1996:46-60 [6] Michael S Bielas. Stochastic and dynamic modeling of fiber gyros [J]. Journal of the SPIE on Fiber Optic and Laser Sensors, 1994,2292:240-253 [7] Dollon M, Cros G, Sevellec A, et al. A new family of IMU based on IFOG technology . ESA SP n 516, 2003:41-45
  • Relative Articles

    [1]GUO Z J,LU H,LIU N,et al. Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):389-396 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0050.
    [2]CHEN Zhao, LIU Zechao. Self-supervised optical fiber sensing signal separation based on linear convolutive mixing process[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0409
    [3]WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857.
    [4]ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0480.
    [5]LIAO Yu-zhou, ZHANG Shu-guang, HAN Peng-xin, XIONG Zhi-yue. Transfer function model of sloshing force effect of liquid propellant and its application[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0626
    [6]WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848.
    [7]LI Jinjian, WANG Haibo, SONG Honglin, YANG Qingbo, BAO Maocheng, QIAN Huazheng, LI Bo. Research on network delay compensation strategy for large-span flexible support photovoltaic module installation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0371
    [8]WANG Haipeng, LIU Haina, WANG Zhendong, MOU Cunxiao, ZHANG He, YE Wen. Pod integrated navigation system elastic lever arm error compensation method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0155
    [9]CHEN Y,FANG Y Z,HAN T,et al. Incremental guidance method for kinetic kill vehicles with target maneuver compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):831-838 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0519.
    [10]ZHAO S,LIN L,LI Z,et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2772-2780 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0743.
    [11]LI Zhonghua, CHEN Chan, WANG Xuejin, CHEN Weiling. Sonar Image Quality Assessment Based on Cross-Network Feature Compensation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0440
    [12]ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530.
    [13]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [14]ZHUANG Z B,WANG W H,TAI H D,et al. Influence of contrast threshold effect on runway visual range measurement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2906-2912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0040.
    [15]CHEN Sheng-jiu, YANG You-xu, ZHANG Xing-cui, WU Yi-fei. A propeller design method considering slipstream effect and its application[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0533
    [16]SHI Z,WANG B,YANG B,et al. Single-event radiation hardening method for 14 nm pFinFET device[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3335-3342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0071.
    [17]GUO Zhong-jie, REN Yuan, WANG Ya-peng, QIU Zi-yi, LI Meng-li. On-chip real-time monitoring with adaptive compensation for total dose bandgap[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0697
    [18]WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0767.
    [19]ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447.
    [20]SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3180) PDF downloads(971) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return