Citation: | Wu Zhigang, Yang Chao. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(04): 373-376. (in Chinese) |
[1] 管 德. 飞机气动弹性力学手册[M]. 北京:航空工业出版社,1994 Guan De. Aircraft aeroelasticity handbook[M]. Beijing:Aeronautical Industry Press, 1994 (in Chinese) [2] Rodden W P, John E H. MSC/NASTRAN aeroelastic analysis user’s guide[M]. The MacNeal-Schwendler Corporation, 1994 [3] Batina J T. Efficient algorithm for solution of the unsteady transonic small-disturbance equation[J]. Journal of Aircraft, 1988, 25(7):598~605 [4] Stephens C H, Arena A S, Gupta K K. CFD-Based aeroservoelastic predictions with comparisons to benchmark experimental data . AIAA paper-99-0766, 1999 [5] Kreiselmaier E, Laschka B. Small disturbance euler equations:efficient and accurate tool for unsteady load prediction[J]. Journal of Aircraft, 2000, 37(5):770~778 [6] Silva W A. A methodology for using nonlinear aerodynamics in aeroservoelastic analysis and design . AIAA paper-91-1110, 1991 [7] Raveh D E. Reduced-Order models for nonliear unsteady aaerodynamics[J]. AIAA Journal, 2001, 39(8):1417~1429 [8] Rugh W J. Nonliear system theory:The Volterra-Wiener approach[M]. The Johns Hopkins University Press, 1981 [9] Tiffang S H, Karpel M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics . AIAA paper-89-1188, 1989 [10] 陆志良, 郭同庆, 管 德. 跨音速颤振计算方法研究 [J]. 航空学报, 2004, 25(4):214~217 Lu Zhiliang, Guo Tongqing, Guan De. A study of calculation method for transonic flutter[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):214~217(in Chinese)
|
[1] | CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0111. |
[2] | HAI Chao, TIAN Xin, ZHANG Hong, TAN Da-long, HE Yi-xin, MENG Fan-yong, YANG Min. A Deep Learning-Based Dual-Domain Information Method for CT Metal Artifact Reduction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0753 |
[3] | MA Qing-lu, DING Xue-qin, HUANG Xiao-xiao, ZOU Zheng. 3D point cloud segmentation method of road scene based on adaptive graph convolution[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0686 |
[4] | HE Chi-yuan, CHENG Shao-xu, XU Lin-feng, MENG Fan-man, WU Qing-bo. A Continual Learning Method Based on Differential Feature Distillation for Multimodal Network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0369 |
[5] | YAO Yougui, LI Shujie, CHEN Zhangyi, XUE Feng. Autism spectrum disorder detection based on multi-modal graph learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0467 |
[6] | WANG Dong, CUI Tianshu, JI Libin, HUANG Yonghui, ZHU Yan. Automatic modulation classification based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0231 |
[7] | HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645. |
[8] | YANG Huixin, WANG Xu, LI Xiang. A prediction method for solid divert and attitude control system performance based on deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0182 |
[9] | LIU Y H,HUANG Y,TAN H,et al. On-line prediction method of wing flexible baseline based on autoregressive model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3426-3433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0865. |
[10] | XIA J W,LIU Z K,ZHU X F,et al. A coordinated rendezvous method for unmanned surface vehicle swarms based on multi-agent reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3365-3376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0088. |
[11] | BAI Jing-bo, CHEN Yu, XIE Shi-yu, DAI Xin-wei. Design Method for Modulation Strategy of a Single-Inductor Multi-Port Converter Based on Reinforcement Learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0302 |
[12] | LIU Ren-di, JIANG Ju, ZHANG Zhe, LIU Xiang. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0403 |
[13] | WANG Xiangzhang, WANG He, XU Bohao. Hard landing risk prediction of civil aircraft based on GBDT-GS method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0443 |
[14] | SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130. |
[15] | GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0154. |
[16] | ZHU Jiazheng, WANG Cong, LI Xinkai, DONG Yingchao, ZHANG Hongli. A deep reinforcement learning based discrete state transition algorithm for fuzzy flexible job shop scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0211 |
[17] | CHEN H,BAI J,YIN C T,et al. Behavior based MOOC user dropout predication framework[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):74-82 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0188. |
[18] | YANG Shang-hang, XU Guo-ning, JIA Zhong-zhen, LI Yong-xiang, ZHUANG Chun-yu, YANG Yan-chu. Research on wireless charging coil location method of aircraft based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0006 |
[19] | JIANG Hao, LIU Jixin, DONG Xinfang. Dynamic collaborative sequencing for departure flights based on traffic state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066 |
[20] | YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021 |
1. | 李海君,王文双,赵建忠. 基于FA-RBF神经网络的导弹导引系统状态预测. 弹箭与制导学报. 2023(01): 1-7 . ![]() | |
2. | 戴金玲,许爱强,申江江,王树友. 基于OCKELM与增量学习的在线故障检测方法. 航空学报. 2022(03): 378-389 . ![]() | |
3. | 李海君,宋超,赵建忠. 基于CA-RBF神经网络的导弹健康状态预测. 航空兵器. 2022(05): 107-113 . ![]() | |
4. | 戴金玲,吴明辉,刘星,李睿峰. 核极限学习机的在线状态预测方法综述. 兵器装备工程学报. 2021(06): 12-19 . ![]() | |
5. | 戴金玲,许爱强,于超,吴阳勇. 基于多元KELM的发动机状态在线预测模型. 北京航空航天大学学报. 2021(11): 2277-2286 . ![]() | |
6. | 刘星,熊厚情,赵建印,朱敏. 基于改进稀疏KELM的在线非平稳动态系统状态预测方法. 系统工程与电子技术. 2020(09): 2022-2032 . ![]() | |
7. | 朱良,谭继文,张义清. 断丝状态下的钢丝绳故障诊断. 煤矿机械. 2019(09): 160-163 . ![]() | |
8. | 孙永泽,陆忠华. 基于超限学习机与随机响应面方法的深度学习超参数优化算法. 高技术通讯. 2019(12): 1165-1174 . ![]() |