Robust visual saliency detection method for infrared small target
-
摘要: 鲁棒的红外(IR)小目标检测是自动目标检测的关键技术,低信噪比条件下的红外小目标检测一直是业内研究热点.为了能有效地检测红外小目标,对红外小目标若干表观特征及其视觉显著性进行了分析,提出一种基于多尺度图像块统计序对比度(MOCIP)的红外小目标视觉显著性鲁棒检测方法,采用两步级联多尺度图像块统计序对比度算法抑制背景和噪声,提升目标强度,获得红外小目标显著性图,并利用自适应阈值实现目标检测.本文详细给出了红外小目标视觉显著性的检测算法,使用红外小目标图像对检测性能进行了实验验证,并与其他检测方法进行了对比.实验结果表明,所提出的方法能够在低信噪比条件下克服噪声和复杂背景的影响,有效地对红外小目标视觉显著性进行检测.Abstract: As a key technique in automatic target detection, robust detection of small infrared target at low signal-to-noise ratio has received a lot of attentions. In order to detect infrared (IR) small targets efficaciously, the apparent characteristics and visual saliency of infrared small target were both analyzed. Thereafter, a robust saliency detection algorithm for infrared small target based on multiscale ordered contrast of image patch (MOCIP) was proposed. The cascaded MOCIP was developed to detect the saliency of infrared small target by suppressing the background and noise and enhancing the infrared small target in two consecutive steps. Consequently, the salient target can be detected with an adaptive threshold in the saliency map obtained by cascaded MOCIP. The robust saliency detection algorithm was presented in details and the efficacy was analyzed. Verification and comparison experiments of detecting the saliency of infrared small target were both conducted. All experiments results show that the proposed MOCIP method is effective and robust in overcoming the impact of noise and complex background and in detecting the saliency of infrared small target at low signal-to-noise (SNR) ratio.
-
[1] Liu L,Huang Z.Infrared dim target detection technology based on background estimate[J].Infrared Physics & Technology,2014,62:59-64. [2] 毛峡,常乐,刁伟鹤.复杂背景下红外点目标探测概率估算[J].北京航空航天大学学报,2011,37(11):1429-1434. Mao X,Chang L,Diao W H.Estimation for detection probability of infrared point target under complex backgrounds[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(11):1429-1434(in Chinese). [3] 刘运龙,薛雨丽,袁素真,等.基于局部均值的红外小目标检测算法[J].红外与激光工程,2013,42(3):814-822. Liu Y L,Xue Y L,Yuan S Z,et al.Infrared small targets detection using local mean[J].Infrared and Laser Engineering,2013,42(3):814-822(in Chinese). [4] Tom V T,Peli T,Leung M,et al.Morphology-based algorithm for point target detection in infrared backgrounds[C]//Optical Engineering and Photonics in Aerospace Sensing.Bellingham,WA:International Society for Optics and Photonics,1993:2-11. [5] 方义强,程正东,樊祥,等.一种基于方差标记的形态学红外小目标检测算法[J].电子学报,2015,43(2):338-343. Fang Y Q,Cheng Z D,Fan X,et al.A morphology algorithm for IR dim target detection based on variance-mark[J].Acta Electronica Sinica,2015,43(2):338-343(in Chinese). [6] 马科,彭真明,何艳敏,等.改进的非下采样Contourlet变换红外小目标检测方法[J].强激光与粒子束,2013,25(11):2811-2815. Ma K,Peng Z M,He Y M,et al.An improved method for dim infrared target detection with nonsubsampled contourlet transform[J].High Power Laser and Particle Beams,2013,25(11):2811-2815(in Chinese). [7] Bai X,Zhou F.Analysis of new top-hat transformation and the application for infrared dim small target detection[J].Pattern Recognition,2010,43(6):2145-2156. [8] 薛永宏,饶鹏,樊士伟,等.基于生成MRF和局部统计特性的红外小目标检测算法[J].红外与毫米波学报,2013,32(5):431-436. Xue Y H,Rao P,Fan S W,et al.Infrared dim small target detection algorithm based on generative Markov random field and local statistic characteristic[J].Journal of Infrared and Millimeter Waves,2013,32(5):431-436. [9] 许庆晗,金立左,费树岷.采用监督特征学习的红外小目标检测[J].东南大学学报:自然科学版,2011,41(5):1008-1012. Xu Q H,Jin L Z,Fei S M.Small infrared target detection via supervised feature learning[J].Journal of Southeast University:Natural Science Edition,2011,41(5):1008-1012(in Chinese). [10] 胡暾,赵佳佳,曹原,等.基于显著性及主成分分析的红外小目标检测[J].红外与毫米波学报,2010,29(4):303-306. Hu T,Zhao J J,Cao Y,et al.Infrared small target detection based on saliency and principle component analysis[J].Journal of Infrared and Millimeter Waves,2010,29(4):303-306(in Chinese). [11] Chen C Philip L,Li H,et al.A local contrast method for small infrared target detection[J].IEEE Transactionson Geoscience and Remote Sensing,2014,52(1):574-581. [12] Yang C,Ma J,Zhang M,et al.Multiscale facet model for infrared small target detection[J].Infrared Physics & Technology,2014,67:202-209. [13] Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259. [14] Harel J,Koch C,Perona P.Graph-based visual saliency[C]//Proceedings of the 20th Annual Conference on Neural Information Processing Systems,NIPS 2006.New York:Neural Information Processing System Foundation,2007:545-552. [15] Hou X D,Zhang L.Saliency detection:A spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007).Washington,D.C.:IEEE Computer Society Press,2007:1-8. [16] 李德仁,胡晓光,朱欣焰.基于视觉反差的显著图生成与目标检测[J].武汉大学学报:信息科学版,2012,37(4):379-383. Li D R,Hu X G,Zhu X Y.Visual contrast based saliency map generation and object detection[J].Geomatics and Information Science of Wuhan University,2012,37(4):379-383(in Chinese). [17] 王岳环,张天序.基于视觉注意机制的实时红外小目标预检测[J].华中科技大学学报,2001,29(6):7-9. Wang Y H,Zhang T X.Real-time pre-detection for IR small target based on attention mechanism[J].Journal of Huazhong University of Science & Technology,2001,29(6):7-9(in Chinese). [18] 姚迅,李德华,黄飞,等.基于视觉注意机制的红外图像小目标检测方法[J].武汉大学学报:工学版,2006,39(6):108-112. Yao X,Li D H,Huang F,et al.Detection of small target in infrared image sequences based on attention mechanism[J].Engineering Journal of Wuhan University,2006,39(6):108-112(in Chinese). [19] Han J,Ma Y,Zhou B,et al.A robust infrared small target detection algorithm based on human visual system[J].IEEE Geoscience and Remote Sensing Letters,2014,11(12):2168-2172. [20] Deshpande S D,Meng H E,Venkateswarlu R,et al.Max-mean and max-median filters for detection of small targets[C]//SPIE's International Symposium on Optical Science,Engineering,and Instrumentation.Bellingham,WA:International Society for Optics and Photonics,1999:74-83. [21] 黎万义,王鹏,乔红.引入视觉注意机制的目标跟踪方法综述[J].自动化学报,2014,40(4):561-576. Li W Y,Wang P,Qiao H.A survey of visual attention based methods for object tracking[J].Acta Automatic Sinica,2014,40(4):561-576(in Chinese). [22] Frintrop S,Rome E,Christensen H I.Computational visual attention systems and their cognitive foundations:A survey[J].ACM Transactions on Applied Perception,2010,7(1):1-39. [23] Frintrop S.Computational visual attentio[M]//Computer Analysis of Human Behavior.London:Springer,2011:69-101. [24] Drummond O E.Introduction[C]//Proceedings of SPIE:Signal and Data Processing of Small Targets.Bellingham,WA:International Society for Optics and Photonics,2014,9092:909201-9-909201-12. [25] Buades A,Coll B,Morel J M.A non-local algorithm for image denoising[C]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005).Piscataway,NJ:IEEE Press,2005,2:60-65. [26] Sakai K,Tanaka S.Spatial pooling in the secondorder spatial structure of cortical complex cells[J].Vision Research,2000,40(7):855-871.
点击查看大图
计量
- 文章访问数: 1077
- HTML全文浏览量: 65
- PDF下载量: 616
- 被引次数: 0