北京航空航天大学学报 ›› 2015, Vol. 41 ›› Issue (12): 2309-2318.doi: 10.13700/j.bh.1001-5965.2014.0834

• 论文 • 上一篇    下一篇

鲁棒的红外小目标视觉显著性检测方法

王刚1, 陈永光2, 杨锁昌1, 高敏1, 戴亚平3   

  1. 1. 军械工程学院, 石家庄 050003;
    2. 北京跟踪与通信技术研究所, 北京 100094;
    3. 北京理工大学 自动化学院, 北京 100081
  • 收稿日期:2014-12-31 修回日期:2015-01-30 出版日期:2015-12-20 发布日期:2016-01-04
  • 通讯作者: 高敏(1963-),男,山西临汾人,教授,博士生导师,gaomin1964@yeah.net,主要研究方向为弹箭信息化理论与技术、多用途导弹设计与评估. E-mail:gaomin1964@yeah.net
  • 作者简介:王刚(1988-),男,山东日照人,博士研究生,g_wang@foxmail.com
  • 基金资助:
    国家自然科学基金(61141009);装备预研重点基金(9140A05040114JB34015);装备预研基金(9140A0505313JB34001)

Robust visual saliency detection method for infrared small target

WANG Gang1, CHEN Yongguang2, YANG Suochang1, GAO Min1, DAI Yaping3   

  1. 1. Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China;
    2. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China;
    3. School of Automation, Beijing Institute of Technology, Beijing 100081, China
  • Received:2014-12-31 Revised:2015-01-30 Online:2015-12-20 Published:2016-01-04

摘要: 鲁棒的红外(IR)小目标检测是自动目标检测的关键技术,低信噪比条件下的红外小目标检测一直是业内研究热点.为了能有效地检测红外小目标,对红外小目标若干表观特征及其视觉显著性进行了分析,提出一种基于多尺度图像块统计序对比度(MOCIP)的红外小目标视觉显著性鲁棒检测方法,采用两步级联多尺度图像块统计序对比度算法抑制背景和噪声,提升目标强度,获得红外小目标显著性图,并利用自适应阈值实现目标检测.本文详细给出了红外小目标视觉显著性的检测算法,使用红外小目标图像对检测性能进行了实验验证,并与其他检测方法进行了对比.实验结果表明,所提出的方法能够在低信噪比条件下克服噪声和复杂背景的影响,有效地对红外小目标视觉显著性进行检测.

关键词: 红外(IR)小目标, 图像块, 对比度, 显著性检测, 目标检测, 信噪比(SNR)

Abstract: As a key technique in automatic target detection, robust detection of small infrared target at low signal-to-noise ratio has received a lot of attentions. In order to detect infrared (IR) small targets efficaciously, the apparent characteristics and visual saliency of infrared small target were both analyzed. Thereafter, a robust saliency detection algorithm for infrared small target based on multiscale ordered contrast of image patch (MOCIP) was proposed. The cascaded MOCIP was developed to detect the saliency of infrared small target by suppressing the background and noise and enhancing the infrared small target in two consecutive steps. Consequently, the salient target can be detected with an adaptive threshold in the saliency map obtained by cascaded MOCIP. The robust saliency detection algorithm was presented in details and the efficacy was analyzed. Verification and comparison experiments of detecting the saliency of infrared small target were both conducted. All experiments results show that the proposed MOCIP method is effective and robust in overcoming the impact of noise and complex background and in detecting the saliency of infrared small target at low signal-to-noise (SNR) ratio.

Key words: infrared (IR) small target, image patch, contrast, saliency detection, target detection, signal-to-noise ratio (SNR)

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发