Multi-classification spacecraft electrical signal identification method based on random forest
-
摘要:
针对航天器电特性信号数据存在数据量大、特征维数高、计算复杂度大和识别率低等问题,提出基于主成分分析(PCA)的特征提取方法和随机森林(RF)算法,对原始数据进行降维,提高计算效率和识别率,实现对航天器电信号数据的快速、准确识别分类。随机森林算法在处理高维数据上具有优越的性能,但是考虑到时间复杂度问题,利用主成分分析方法对数据进行压缩和降维,在保证准确率的同时提高了计算效率。实验结果表明:与其他算法相比,针对航天器电特性信号数据,本文方法在准确率、计算效率和稳定性等方面均显示出优异的性能。
-
关键词:
- 航天器 /
- 电信号识别 /
- 主成分分析(PCA) /
- 多分类 /
- 随机森林(RF)
Abstract:The spacecraft electrical signal characteristic data have problems such as large amount, high-dimensional features, high computational complexity and low identification rate. The feature extraction method of principal component analysis (PCA) and random forest (RF) algorithm was proposed to reduce the dimensionality of the original data, improve the computational efficiency and identification rate, and achieve rapid and accurate identification of spacecraft electrical signal data. The random forest algorithm has superior performance in dealing with high-dimensional data. However, considering the time complexity, the method of PCA was used to compress the data and reduce the dimension in order to ensure the accuracy of the classification and improve the computational efficiency. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in accuracy, computational efficiency, and stability when dealing with spacecraft electrical signal data.
-
表 1 训练时间和预测准确率对比
Table 1. Comparison of training time and prediction accuracy
算法 准确率/% 训练时间/s NBM 79.02 KNN 85.43 127.36 SVM 88.23 1 873.80 RF 98.90 189.93 PCA-NBM 81.41 PCA-KNN 94.34 11.33 PCA-SVM 91.59 29.32 PCA-RF 98.33 36.40 -
[1] 魏传锋, 贾阳, 王浚.航天器在轨自主热故障诊断专家系统研究[J].装备环境工程, 2006, 3(3):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200603012.htmWEI C F, JIA Y, WANG J.Research on in-orbit spacecraft thermal fault diagnosis expert system[J].Equipment Environmental Engineering, 2006, 3(3):54-57(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200603012.htm [2] SHAW S R.System identification techniques and modeling for nonintrusive load diagnostics[D].Cambrige:Massachusetts Institute of Technology, 2000. [3] 李可.多参数环境模拟系统的智能控制方法与仿真研究[J].北京航空航天大学学报, 2007, 33(5):535-538. http://bhxb.buaa.edu.cn/CN/abstract/abstract9546.shtmlLI K.System model simulation and control method used in environmental simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5):535-538(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9546.shtml [4] LUO R.Analysis of PHM technology for spacecraft[J].Spacecraft Engineering, 2013, 22(4):95-102. [5] LIU Y, LI K, HUANG Y.Spacecraft electrical characteristics identification study based on offline FCM clustering and online SVM classifier[C]//International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI).Piscataway, NJ:IEEE Press, 2014:1-4. [6] LI K, LIU Y, WANG Q.A spacecraft electrical characteristics multi-label classification method based on off-line FCM clustering and on-line WPSVM[J].Plos One, 2015, 10(11):1413-1423. [7] 李可, 刘祎, 杜少毅.基于PCA和WPSVM的航天器电特性识别方法[J].北京航空航天大学学报, 2015, 41(7):1177-1182. http://bhxb.buaa.edu.cn/CN/abstract/abstract13308.shtmlLI K, LIU Y, DU S Y.Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1177-1182(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13308.shtml [8] 鄢仁武, 叶轻舟, 周理.基于随机森林的电力电子电路故障诊断技术[J].武汉大学学报(工学版), 2013, 46(6):742-746. http://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201306012.htmYAN R W, YE Q Z, ZHOU L.Application of random forests algorithm to fault diagnosis of power electronic circuit[J].Engineering Journal of Wuhan University, 2013, 46(6):742-746(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201306012.htm [9] 庄进发, 罗键, 彭彦卿, 等.基于改进随机森林的故障诊断方法研究[J].计算机集成制造系统, 2009, 15(4):777-785. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200904026.htmZHUANG J F, LUO J, PENG Y Q, et al.Fault diagnosis method based on modified random forests[J].Computer Integrated Manufacturing Systems, 2009, 15(4):777-785(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200904026.htm [10] LI K, LIU W K, WANG J, et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics, 2013, 26(6):1360-1369. doi: 10.1016/j.cja.2013.07.006 [11] LI K, LIU W K, WANG J, et al.Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin[J].Chinese Journal of Aeronautics, 2014, 27(6):1390-1400. doi: 10.1016/j.cja.2014.10.005 [12] LIU Y, LI K, SONG S M, et al.The research of spacecraft electrical characteristics identification and diagnosis using PCA feature extraction[C]//IEEE International Conference on Signal Processing.Piscataway, NJ:IEEE Press, 2014:1413-1417. [13] 刘小虎, 李生.决策树的优化算法[J].软件学报, 1998, 9(10):797-800. http://cdmd.cnki.com.cn/Article/CDMD-10732-1014421484.htmLIU X H, LI S.Optimization algorithm of decision tree[J].Journal of Software, 1998, 9(10):797-800(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10732-1014421484.htm [14] PATAKI B, TOTH N.Classification confidence weighted majority voting using decision tree classifiers[J].International Journal of Intelligent Computing & Cybernetics, 2008, 1(2):169-192. https://www.deepdyve.com/lp/emerald-publishing/classification-confidence-weighted-majority-voting-using-decision-tree-Q2YteXnQ3F [15] PAL M.Random forest classifier for remote sensing classification[J].International Journal of Remote Sensing, 2005, 26(1):217-222. doi: 10.1080/01431160412331269698 [16] DENG H, RUNGER G.Gene selection with guided regularized random forest[J].Pattern Recognition, 2013, 46(12):3483-3489. doi: 10.1016/j.patcog.2013.05.018 [17] KHAING H K T.Detection model for daniel-of-service attacks using random forest and k-nearest neighbors[J].International Journal of Advanced Research in Computer Engineering & Technology, 2013, 2(5):1855-1860. http://www.ijpttjournal.org/volume-3/issue-1/IJPTT-V3I1P413.pdf