留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机森林的航天器电信号多分类识别方法

兰巍 贾素玲 宋世民 李可

兰巍, 贾素玲, 宋世民, 等 . 基于随机森林的航天器电信号多分类识别方法[J]. 北京航空航天大学学报, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661
引用本文: 兰巍, 贾素玲, 宋世民, 等 . 基于随机森林的航天器电信号多分类识别方法[J]. 北京航空航天大学学报, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661
LAN Wei, JIA Suling, SONG Shimin, et al. Multi-classification spacecraft electrical signal identification method based on random forest[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661(in Chinese)
Citation: LAN Wei, JIA Suling, SONG Shimin, et al. Multi-classification spacecraft electrical signal identification method based on random forest[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661(in Chinese)

基于随机森林的航天器电信号多分类识别方法

doi: 10.13700/j.bh.1001-5965.2016.0661
基金项目: 

航空科学基金 2012XX1043

中央高校基本科研业务费专项资金 YWF-16-HKXY-017

国家自然科学基金 61773039

详细信息
    作者简介:

    兰巍   女, 博士研究生; 主要研究方向:数据挖掘与机器学习

    贾素玲   女, 教授; 主要研究方向:信息系统

    宋世民   男, 高级工程师; 主要研究方向:卫星综合测试

    李可   男, 高级实验师; 主要研究方向:环境控制与计算机测试

    通讯作者:

    李可, E-mail:like@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Multi-classification spacecraft electrical signal identification method based on random forest

Funds: 

Aeronautical Science Foundation of China 2012XX1043

the Fundamental Research Funds for the Central Universities YWF-16-HKXY-017

National Natural Science Foundation of China 61773039

More Information
  • 摘要:

    针对航天器电特性信号数据存在数据量大、特征维数高、计算复杂度大和识别率低等问题,提出基于主成分分析(PCA)的特征提取方法和随机森林(RF)算法,对原始数据进行降维,提高计算效率和识别率,实现对航天器电信号数据的快速、准确识别分类。随机森林算法在处理高维数据上具有优越的性能,但是考虑到时间复杂度问题,利用主成分分析方法对数据进行压缩和降维,在保证准确率的同时提高了计算效率。实验结果表明:与其他算法相比,针对航天器电特性信号数据,本文方法在准确率、计算效率和稳定性等方面均显示出优异的性能。

     

  • 图 1  本文算法设计流程

    Figure 1.  Design flowchart of proposed algorithm

    图 2  PCA方法流程

    Figure 2.  Flowchart of PCA method

    图 3  RF算法流程

    Figure 3.  Flowchart of RF algorithm

    图 4  决策树结构

    Figure 4.  Structure of decision tree

    图 5  部分电特性数据的物理意义

    Figure 5.  Physical meaning of some electrical characteristic data

    图 6  决策树数目与分类误差率曲线

    Figure 6.  Curves for number of decision trees and classification error rate

    表  1  训练时间和预测准确率对比

    Table  1.   Comparison of training time and prediction accuracy

    算法 准确率/% 训练时间/s
    NBM 79.02
    KNN 85.43 127.36
    SVM 88.23 1 873.80
    RF 98.90 189.93
    PCA-NBM 81.41
    PCA-KNN 94.34 11.33
    PCA-SVM 91.59 29.32
    PCA-RF 98.33 36.40
    下载: 导出CSV
  • [1] 魏传锋, 贾阳, 王浚.航天器在轨自主热故障诊断专家系统研究[J].装备环境工程, 2006, 3(3):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200603012.htm

    WEI C F, JIA Y, WANG J.Research on in-orbit spacecraft thermal fault diagnosis expert system[J].Equipment Environmental Engineering, 2006, 3(3):54-57(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200603012.htm
    [2] SHAW S R.System identification techniques and modeling for nonintrusive load diagnostics[D].Cambrige:Massachusetts Institute of Technology, 2000.
    [3] 李可.多参数环境模拟系统的智能控制方法与仿真研究[J].北京航空航天大学学报, 2007, 33(5):535-538. http://bhxb.buaa.edu.cn/CN/abstract/abstract9546.shtml

    LI K.System model simulation and control method used in environmental simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5):535-538(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9546.shtml
    [4] LUO R.Analysis of PHM technology for spacecraft[J].Spacecraft Engineering, 2013, 22(4):95-102.
    [5] LIU Y, LI K, HUANG Y.Spacecraft electrical characteristics identification study based on offline FCM clustering and online SVM classifier[C]//International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI).Piscataway, NJ:IEEE Press, 2014:1-4.
    [6] LI K, LIU Y, WANG Q.A spacecraft electrical characteristics multi-label classification method based on off-line FCM clustering and on-line WPSVM[J].Plos One, 2015, 10(11):1413-1423.
    [7] 李可, 刘祎, 杜少毅.基于PCA和WPSVM的航天器电特性识别方法[J].北京航空航天大学学报, 2015, 41(7):1177-1182. http://bhxb.buaa.edu.cn/CN/abstract/abstract13308.shtml

    LI K, LIU Y, DU S Y.Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1177-1182(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13308.shtml
    [8] 鄢仁武, 叶轻舟, 周理.基于随机森林的电力电子电路故障诊断技术[J].武汉大学学报(工学版), 2013, 46(6):742-746. http://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201306012.htm

    YAN R W, YE Q Z, ZHOU L.Application of random forests algorithm to fault diagnosis of power electronic circuit[J].Engineering Journal of Wuhan University, 2013, 46(6):742-746(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201306012.htm
    [9] 庄进发, 罗键, 彭彦卿, 等.基于改进随机森林的故障诊断方法研究[J].计算机集成制造系统, 2009, 15(4):777-785. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200904026.htm

    ZHUANG J F, LUO J, PENG Y Q, et al.Fault diagnosis method based on modified random forests[J].Computer Integrated Manufacturing Systems, 2009, 15(4):777-785(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200904026.htm
    [10] LI K, LIU W K, WANG J, et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics, 2013, 26(6):1360-1369. doi: 10.1016/j.cja.2013.07.006
    [11] LI K, LIU W K, WANG J, et al.Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin[J].Chinese Journal of Aeronautics, 2014, 27(6):1390-1400. doi: 10.1016/j.cja.2014.10.005
    [12] LIU Y, LI K, SONG S M, et al.The research of spacecraft electrical characteristics identification and diagnosis using PCA feature extraction[C]//IEEE International Conference on Signal Processing.Piscataway, NJ:IEEE Press, 2014:1413-1417.
    [13] 刘小虎, 李生.决策树的优化算法[J].软件学报, 1998, 9(10):797-800. http://cdmd.cnki.com.cn/Article/CDMD-10732-1014421484.htm

    LIU X H, LI S.Optimization algorithm of decision tree[J].Journal of Software, 1998, 9(10):797-800(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10732-1014421484.htm
    [14] PATAKI B, TOTH N.Classification confidence weighted majority voting using decision tree classifiers[J].International Journal of Intelligent Computing & Cybernetics, 2008, 1(2):169-192. https://www.deepdyve.com/lp/emerald-publishing/classification-confidence-weighted-majority-voting-using-decision-tree-Q2YteXnQ3F
    [15] PAL M.Random forest classifier for remote sensing classification[J].International Journal of Remote Sensing, 2005, 26(1):217-222. doi: 10.1080/01431160412331269698
    [16] DENG H, RUNGER G.Gene selection with guided regularized random forest[J].Pattern Recognition, 2013, 46(12):3483-3489. doi: 10.1016/j.patcog.2013.05.018
    [17] KHAING H K T.Detection model for daniel-of-service attacks using random forest and k-nearest neighbors[J].International Journal of Advanced Research in Computer Engineering & Technology, 2013, 2(5):1855-1860. http://www.ijpttjournal.org/volume-3/issue-1/IJPTT-V3I1P413.pdf
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  147
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 录用日期:  2016-12-09
  • 网络出版日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答