留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遥感图像飞机目标高效搜检深度学习优化算法

郭琳 秦世引

郭琳, 秦世引. 遥感图像飞机目标高效搜检深度学习优化算法[J]. 北京航空航天大学学报, 2019, 45(1): 159-173. doi: 10.13700/j.bh.1001-5965.2018.0239
引用本文: 郭琳, 秦世引. 遥感图像飞机目标高效搜检深度学习优化算法[J]. 北京航空航天大学学报, 2019, 45(1): 159-173. doi: 10.13700/j.bh.1001-5965.2018.0239
GUO Lin, QIN Shiyin. Deep learning and optimization algorithm for high efficient searching and detection of aircraft targets in remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 159-173. doi: 10.13700/j.bh.1001-5965.2018.0239(in Chinese)
Citation: GUO Lin, QIN Shiyin. Deep learning and optimization algorithm for high efficient searching and detection of aircraft targets in remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 159-173. doi: 10.13700/j.bh.1001-5965.2018.0239(in Chinese)

遥感图像飞机目标高效搜检深度学习优化算法

doi: 10.13700/j.bh.1001-5965.2018.0239
基金项目: 

国家自然科学基金 U1435220

国家自然科学基金 61731001

详细信息
    作者简介:

    郭琳  男, 博士研究生。主要研究方向:深度学习、图像语义分割、目标的检测与识别等

    秦世引  男, 博士, 教授, 博士生导师。主要研究方向:图像处理、模式识别、智能优化控制等

    通讯作者:

    秦世引, E-mail: qsy@buaa.edu.cn

  • 中图分类号: TP753

Deep learning and optimization algorithm for high efficient searching and detection of aircraft targets in remote sensing images

Funds: 

National Natural Science Foundation of China U1435220

National Natural Science Foundation of China 61731001

More Information
  • 摘要:

    为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。

     

  • 图 1  不同区域停靠的飞机目标样本示意图

    Figure 1.  Schematic of aircraft target sample docked in various areas

    图 2  停机坪与跑道区域分割DNN网络模型的离线监督训练

    Figure 2.  Off-line supervised training of DNN model for apron and runway area segmentation

    图 3  搜寻与检测的级联组合

    Figure 3.  Cascade combination of searching and detection

    图 4  停机坪与跑道区域分割DNN网络模型示意图

    Figure 4.  Schematic of DNN models for apron and runway area segmentation

    图 5  停机坪与跑道区域人工标注及样本

    Figure 5.  Manual labelling samples of apron and runway areas

    图 6  停机坪与跑道区域分割DNN网络模型性能进化曲线

    Figure 6.  Performance evolution curves of DNN models for apron and runway area segmentation

    图 7  不同DNN网络模型停机坪与跑道区域分割结果对比

    Figure 7.  Comparison of apron and runway area segmentation results among various DNN models

    图 8  不同DNN网络模型停机坪与跑道区域分割IoU对比

    Figure 8.  Comparison of IoU for apron and runway area segmentation with various DNN models

    图 9  停机坪与跑道区域分割时间开销对比

    Figure 9.  Comparison of time cost for apron and runway segmentation

    图 10  YOLO网络模型及参数设置

    Figure 10.  YOLO network model and parameter setting

    图 11  飞机目标样本的数据扩充

    Figure 11.  Sample data augmentation for aircraft targets

    图 12  YOLO网络性能进化曲线

    Figure 12.  Performance evolution curves of YOLO networks

    图 13  飞机目标检测的时间开销对比

    Figure 13.  Comparison of time cost for aircraft target detection

    图 14  飞机目标检测结果对比

    Figure 14.  Comparison of aircraft target detection results

    图 15  综合实验结果对比

    Figure 15.  Comparison of comprehensive experimental results

    表  1  不同区域停靠的飞机目标样本数量统计

    Table  1.   Quantity statistics of aircraft target sample docked in various areas

    区域 飞机目标样本数量/架 比例/%
    停机坪 1035 96.82
    跑道 11 1.03
    其他区域 23 2.15
    下载: 导出CSV

    表  2  不同DNN网络模型停机坪与跑道区域分割IoU得分

    Table  2.   IoU for apron and runway area segmentation with various DNN models

    DNN网络 FCN-16 FCN-8 SegNet U-Net LS-RSIASNN
    IoU得分 0.1730 0.3840 0.6495 0.7243 0.7454
    下载: 导出CSV

    表  3  飞机目标平均检测时间开销对比

    Table  3.   Comparison of average time cost for aircraft target detection

    s
    算法 平均检测时间开销
    R-CNN 2.0257
    Faster R-CNN 0.0946
    YOLO 0.0277
    下载: 导出CSV

    表  4  飞机目标检测性能对比

    Table  4.   Performance comparison of aircraft target detection

    算法 图像类型 精确率/% 漏检率/% 时间开销/s
    R-CNN 原始遥感图像 56.25 18.72 385.51
    停机坪与跑道区域分割图像 78.32 15.35 87.49
    Faster R-CNN 原始遥感图像 68.87 6.31 039.46
    停机坪与跑道区域分割图像 94.69 5.19 28.29
    YOLO 原始遥感图像 62.56 10.83 006.65
    停机坪与跑道区域分割图像 90.28 9.26 4.76
    下载: 导出CSV
  • [1] HAN Z X, ZHANG H, ZHANG J F, et al.Fast aircraft detection based on region locating network in large-scale remote sensing images[C]//24th IEEE International Conference on Image Processing.Piscataway, NJ: IEEE Press, 2017: 2294-2298.
    [2] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2014: 580-587.
    [3] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [4] 赵雪梅, 李玉, 赵泉华.基于隐马尔可夫高斯随机场模型的模糊聚类高分辨率遥感影像分割算法[J].电子学报, 2016, 44(3):679-686. doi: 10.3969/j.issn.0372-2112.2016.03.028

    ZHAO X M, LI Y, ZHAO Q H.Hidden Markov Gaussian random field based fuzzy clustering algorithm for high-resolution remote sensing image segmentation[J]. Acta Electronica Sinica, 2016, 44(3):679-686(in Chinese). doi: 10.3969/j.issn.0372-2112.2016.03.028
    [5] 陈荣元, 徐雪松, 李广琼, 等.自适应特征加权的Gibbs随机场影像分割方法[J].电子学报, 2016, 44(10):2351-2356. doi: 10.3969/j.issn.0372-2112.2016.10.010

    CHEN R Y, XU X S, LI G Q, et al.Image segmentation by combining adaptively weighted features with Gibbs random field[J]. Acta Electronica Sinica, 2016, 44(10):2351-2356(in Chinese). doi: 10.3969/j.issn.0372-2112.2016.10.010
    [6] BUDAK U, HALICI U, SENGUR A, et al.Efficient airport detection using line segment detector and Fisher vector representation[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(8):1079-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b90b1ce53fa228655d3e4964573adf7
    [7] WANG Y, PAN L.Automatic airport recognition based on saliency detection and semantic information[J]. ISPRS International Journal of Geo-Information, 2016, 5(7):115-118. doi: 10.3390/ijgi5070115
    [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [9] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [10] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [11] RONNEBERGER O, FISCHER P, BROX T.U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin: Springer, 2015: 234-241.
    [12] DAN C C, GIUSTI A, GAMBARDELLA L M, et al.Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213884171
    [13] CHEN L, PAPANDREOU G, KOKKINOS I, et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201806005
    [14] ZHAO H, SHI J, QI X, et al.Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 6230-6239.
    [15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [16] HE K, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 2980-2988.
    [17] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 1440-1448.
    [18] HE K, ZHANG X, REN S, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [19] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 779-788.
    [20] TORRALBA A, RUSSELL B C, YUEN J.LabelMe:Online image annotation and applications[J]. Proceedings of the IEEE, 2010, 98(8):1467-1484. doi: 10.1109/JPROC.2010.2050290
    [21] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 770-778.
    [22] HUANG G, LIU Z, WEINBERGER K Q, et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 3-8.
    [23] SU W, WANG Z.Widening residual skipped network for semantic segmentation[J]. IET Image Processing, 2017, 11(10):880-887. doi: 10.1049/iet-ipr.2017.0070
    [24] KINGMA D P, BA J.Adam: A method for stochastic optimization[EB/OL]. (2014-12-22).https://arxiv.org/abs/1412.6980.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  116
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 录用日期:  2018-09-03
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答