留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星再入飞行器风洞试验与真实飞行之间相关性的探讨

刘方彬 袁军娅

刘方彬, 袁军娅. 火星再入飞行器风洞试验与真实飞行之间相关性的探讨[J]. 北京航空航天大学学报, 2019, 45(4): 787-795. doi: 10.13700/j.bh.1001-5965.2018.0434
引用本文: 刘方彬, 袁军娅. 火星再入飞行器风洞试验与真实飞行之间相关性的探讨[J]. 北京航空航天大学学报, 2019, 45(4): 787-795. doi: 10.13700/j.bh.1001-5965.2018.0434
LIU Fangbin, YUAN Junya. Discussion on correlation between wind tunnel test and flight of Mars reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 787-795. doi: 10.13700/j.bh.1001-5965.2018.0434(in Chinese)
Citation: LIU Fangbin, YUAN Junya. Discussion on correlation between wind tunnel test and flight of Mars reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 787-795. doi: 10.13700/j.bh.1001-5965.2018.0434(in Chinese)

火星再入飞行器风洞试验与真实飞行之间相关性的探讨

doi: 10.13700/j.bh.1001-5965.2018.0434
详细信息
    作者简介:

    刘方彬  男, 硕士。主要研究方向:高超速飞行器化学反应

    袁军娅  女,硕士生导师,高级工程师。主要研究方向:高超声速飞行器气动热环境与热防护

    通讯作者:

    袁军娅, E-mail: yuanjy@buaa.edu.cn

  • 中图分类号: V476.4

Discussion on correlation between wind tunnel test and flight of Mars reentry vehicle

More Information
  • 摘要:

    由于风洞试验条件限制,难以完全模拟火星再入飞行器真实飞行环境,因此需要建立火星再入飞行器风洞条件与真实飞行之间的关联关系。基于国外文献公开数据,采用数值方法和对比分析方法探讨了类"探路者号"外形的火星再入飞行器的风洞试验与真实飞行之间的外推方法。结果表明,在高焓空气风洞和常规空气风洞试验条件下,可以将模型驻点附近的无量纲压力和压力系数作为相关性参数,将风洞条件与飞行条件相关联起来,但是不能直接利用风洞试验的热流、无量纲热流和Stanton数作为关联参数;在高焓CO2风洞试验条件下,可以利用模型驻点附近的无量纲压力、压力系数和Stanton数作为外推参数,但是不能直接将风洞试验的热流、无量纲热流作为相关性参数,将风洞条件下的风洞数据通过外推获取飞行条件下飞行器的性能参数。

     

  • 图 1  “Pathfinder”计算模型[11]

    Figure 1.  Calculation model of "Pathfinder"[11]

    图 2  “MP-1”计算模型[12]

    Figure 2.  Calculation model of "MP-1"[12]

    图 3  “MP-1”的网格

    Figure 3.  Mesh of "MP-1"

    图 4  “Pathfinder”的网格

    Figure 4.  Mesh of "Pathfinder"

    图 5  气动热对比(风洞条件)

    Figure 5.  Comparison of aerodynamics (wind tunnel condition)

    图 6  风洞条件和飞行条件压力系数

    Figure 6.  Pressure coefficient of wind tunnel and flight conditions

    图 7  风洞条件和飞行条件无量纲压力

    Figure 7.  Dimensionless pressure of wind tunnel and flight conditions

    图 8  风洞条件和飞行条件的马赫数对比

    Figure 8.  Mach number comparison of wind tunnel and flight conditions

    图 9  风洞条件和飞行条件的温度对比

    Figure 9.  Temperature comparison of wind tunnel and flight

    图 10  风洞条件和飞行条件的压力对比

    Figure 10.  Pressure comparison of wind tunnel and flight

    图 11  壁面热流分布

    Figure 11.  Distribution of wall surface heat flow

    图 12  壁面Stanton数的分布

    Figure 12.  Distribution of wall Stanton number

    表  1  计算条件[12]

    Table  1.   Calculation conditions [12]

    变量 CASE 1 CASE 2 CASE 3
    飞行条件 风洞条件 飞行条件 风洞条件 飞行条件 风洞条件
    u/(m·s-1) 7 009 1 416 7 263 1 422 7 185 5 162 4 772
    ρ/(kg·m-3) 1.66×10-4 8.680×10-3 8.64×10-5 4.51×10-3 1.095×10-4 5.712×10-3 5.789×10-3
    T/K 160.3 52.45 156.5 53.31 158.8 1 113 1 088
    p/Pa 5.10 130.6 2.60 69 3.338 1 824 1 191
    Ma 34 9.80 35.5 9.68 36.20 7.93 9.71
    0.12×106 3.187×106 0.095×106 1.621×106 0.126×106 0.66×106 0.66×106
    ρL/(kg·m-2) 4.41×10-4 4.41×10-4 2.29×10-4 2.29×10-4 2.94×10-4 2.90×10-4 2.94×10-4
    组分(体积分数) 97%CO2+3%N2 21%O2+79%N2 97%CO2+3%N2 21%O2+79%N2 97%CO2+3%N2 21%O2+79%N2 100%CO2
    下载: 导出CSV

    表  2  5组分化学反应模型[13]

    Table  2.   Mechanism with five species chemical reactions [13]

    编号 化学反应
    1 N2+MN+N+M  M=N2,O2,NO,N,O
    2 O2+MO+O+M  M=N2,O2,NO,N,O
    3 NO+MN+O+M  M=N2,O2,NO,N,O
    4 NO+ON+O2
    5 N2+ONO+N
    下载: 导出CSV

    表  3  8组分9化学反应模型[14]

    Table  3.   Mechanism with eight species and nine chemical reactions [14]

    编号 化学反应
    1 CO2+MCO+O+M  M1=N2,O2,NO,CO2,CO;
                   M2=N,O,C
    2 CO+MC+O+M  M1=N2,O2,NO,CO2,CO;
                 M2=N,O,C
    3 N2+MN+N+M  M1=N2,O2,NO,CO2,CO;
                 M2=N,O,C
    4 O2+MO+O+M  M1=N2,O2,NO,CO2,CO;
                 M2=N,O,C
    5 NO+MN+O+M  M1=N,O,C,NO,CO2
                 M2=N2,O2,CO
    6 NO+ON+O2
    7 N2+ONO+N
    8 CO+OC+O2
    9 CO2+OCO+O
    下载: 导出CSV

    表  4  对比条件和计算结果(飞行条件)

    Table  4.   Comparison conditions and computation results(flight condition)

    高度/
    km
    速度/(m· s-1) 驻点热流
    文献[8]结果/ (106W·m-2) 计算结果/ (106W·m-2) 误差/ %
    85.000 7 504 0.099 0.105 6.00
    64.599 7 472 0.392 0.383 1.26
    56.026 7 364 0.565 0.550 2.72
    43.097 6 774 1.140 1.132 0.87
    41.204 6 596 1.180 1.163 0.84
    下载: 导出CSV
  • [1] 苗文博, 吕俊明, 程晓丽, 等.火星进入热环境预测的热力学模型数值分析[J].计算物理, 2015, 32(4):410-415. doi: 10.3969/j.issn.1001-246X.2015.04.005

    MIAO W B, LV J M, CHENG X L, et al.Numerical analysis of thermodynamics models for Mars entry aeroheating prediction[J].Compute Physics, 2015, 32(4):410-415(in Chinese). doi: 10.3969/j.issn.1001-246X.2015.04.005
    [2] LU F K, MARREN D.Advanced hypersonic test facilities[M].Reston:AIAA, 2002:639-650.
    [3] 董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析[D].北京: 北京航空航天大学, 2006.

    DONG W Z.Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D].Beijing: Beihang University, 2006(in Chinese).
    [4] BUR R, BENAY R, CHANETZ B, et al.Experimental and numerical study of the Mars Pathfinder vehicle[J].Aerospace Science and Technology, 2003, 7(7):510-516. doi: 10.1016/S1270-9638(03)00062-2
    [5] ARMENISE I, REYNIER P, KUSTOVA E.Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics[J].Journal of Thermophysics and Heat Transfer, 2015, 30(4):705-720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eab966802b9fe2d7461e54a3b2b78cf5
    [6] PATERNA D, MONTI R, SAVINO R, et al.Experimental and numerical investigation of Martian atmosphere entry[C]//Proceedings of 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings.Reston: AIAA, 2002: 227-236.
    [7] HOLLIS B, PERKINS J.Hypervelocity aeroheating measurements in wake of Mars mission entry vehicle: AIAA-95-2314[R].Reston: AIAA, 1995.
    [8] HOLLIS B R.Experimental and computational aerothermodynamics of a Mars entry vehicle: NAG1-1663[R].Washington, D.C.: NASA Langley Research Center, 1996.
    [9] GNOFFO P A, WEILMUENSTER K J, BRAUN R D, et al.Influence of sonic-line location on Mars Pathfinder probe aerothermodynamics[J].Journal of Spacecraft and Rockets, 1996, 33(2):169-177. doi: 10.2514/3.26737
    [10] WILLCOCSON W H.Mars Pathfinder heatshield design and flight experience[J].Journal of Spacecraft and Rockets, 1999, 36(3):374-379. doi: 10.2514/2.3456
    [11] LAKSHMI K S, ANOOP P, SUNDAR B.Aerodynamic heating predictions for spacecraft entering Mars atmosphere[C]//Proceedings of the 23rd National and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC 2015), 2015.
    [12] MILOS F, CHEN Y K, CONGDON W, et al.Mars Pathfinder entry temperature data, aerothermal heating, and heatshield material response: AIAA-98-2681[R].Reston: AIAA, 1998.
    [13] PARK C.On convergence of computation of chemically reacting flows: AIAA-1985-247[R].Reston: AIAA, 1985.
    [14] PARK C, HOWE J T, JAFFE R L, et al.Review of chemical-kinetic problems of future NASA missions.Ⅱ-Mars entries[J].Journal of Thermophysics and Heat Transfer, 1994, 8(1):9-23. doi: 10.2514/3.496
    [15] 张翔, 阎超, 杨威, 等.高超声速飞行器气动热网格依赖性研究[J].战术导弹技术, 2016(3):21-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201603005

    ZHANG X, YAN C, YANG W, et al.Investigation of the grid-dependent in heat transfer simulation for hypersonic vehicle[J].Tactical Missile Technology, 2016(3):21-27(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201603005
    [16] ANDERSON JR J D.Hypersonic and high-temperature gas dynamics[M].2nd ed.Reston:AIAA, 2006:386-387.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  41
  • PDF下载量:  458
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-18
  • 录用日期:  2018-11-23
  • 网络出版日期:  2019-04-20

目录

    /

    返回文章
    返回
    常见问答