留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速自适应超螺旋算法的制导律

刘畅 杨锁昌 汪连栋 张宽桥

刘畅, 杨锁昌, 汪连栋, 等 . 基于快速自适应超螺旋算法的制导律[J]. 北京航空航天大学学报, 2019, 45(7): 1388-1397. doi: 10.13700/j.bh.1001-5965.2018.0654
引用本文: 刘畅, 杨锁昌, 汪连栋, 等 . 基于快速自适应超螺旋算法的制导律[J]. 北京航空航天大学学报, 2019, 45(7): 1388-1397. doi: 10.13700/j.bh.1001-5965.2018.0654
LIU Chang, YANG Suochang, WANG Liandong, et al. Guidance law based on fast adaptive super-twisting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1388-1397. doi: 10.13700/j.bh.1001-5965.2018.0654(in Chinese)
Citation: LIU Chang, YANG Suochang, WANG Liandong, et al. Guidance law based on fast adaptive super-twisting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1388-1397. doi: 10.13700/j.bh.1001-5965.2018.0654(in Chinese)

基于快速自适应超螺旋算法的制导律

doi: 10.13700/j.bh.1001-5965.2018.0654
详细信息
    作者简介:

    刘畅   男, 博士研究生。主要研究方向:导弹制导

    杨锁昌   男, 博士, 教授, 博士生导师。主要研究方向:导弹制导

    通讯作者:

    杨锁昌, E-mail: ysuochang@163.com

  • 中图分类号: V488.133

Guidance law based on fast adaptive super-twisting algorithm

More Information
  • 摘要:

    针对地空导弹攻击机动目标的制导律设计问题,提出了一种有限时间稳定的新型二阶滑模制导律。在弹目相对运动模型的基础上,将制导问题转化为一阶系统的控制问题。在超螺旋(ST)算法中引入线性项和一种新的参数自适应律,提出了一种快速自适应超螺旋(FAST)算法,该算法不需要已知系统不确定性的边界且收敛速度较快。利用类二次型Lyapunov函数证明了系统有限时间稳定性,给出了收敛时间估计公式。通过与自适应滑模制导律、ST制导律和光滑二阶滑模制导律的仿真对比,验证了所设计的制导律在保证制导精度的同时,能够在有限时间内提高滑模变量的收敛速度,并且避免了参数选择困难的问题。

     

  • 图 1  导弹和目标相对运动示意图

    Figure 1.  Schematic diagram of relative motion of missile and target

    图 2  导弹弹道曲线(情形1)

    Figure 2.  Missile ballistic curves (Case 1)

    图 3  滑模变量及其一阶导数变化曲线(情形1)

    Figure 3.  Variation curves of sliding-mode variable and its first-order derivative (Case 1)

    图 4  导弹法向过载变化曲线(情形1)

    Figure 4.  Variation curves of missile normal overload (Case 1)

    图 5  导弹弹道曲线(情形2)

    Figure 5.  Missile ballistic curve (Case 2)

    图 6  滑模变量及其一阶导数变化曲线(情形2)

    Figure 6.  Variation curves of sliding-mode variable and its first-order derivative (Case 2)

    图 7  导弹法向过载变化曲线(情形2)

    Figure 7.  Variation curves of missile normal overload (Case 2)

    表  1  仿真实验结果(情形1)

    Table  1.   Simulation experimental results (Case 1)

    制导律 Δ/m treach/s tf/s
    ASMG 0.462 2 7.36 10.53 14.94
    SSOSMG 0.518 6 12.2 21.83 14.91
    STG 1.175 6 6.65 12.25 14.92
    FASTG 0.616 0 5.30 14.64 14.90
    下载: 导出CSV

    表  2  仿真实验结果(情形2)

    Table  2.   Simulation experimental results (Case 2)

    制导律 Δ/m treach/s tf/s
    ASMG 0.549 4 20.31 12.57
    SSOSMG 0.566 2 10.91 21.30 11.92
    STG 0.319 7 20.43 11.97
    FASTG 0.875 3 1.79 18.98 11.74
    下载: 导出CSV
  • [1] 谭健.飞翼布局无人机鲁棒滑模非线性飞行控制研究[D].西安: 西北工业大学, 2015: 72-77. https://wenku.baidu.com/view/a8afa51d777f5acfa1c7aa00b52acfc788eb9f5c.html

    TAN J.Research on robust sliding mode nonlinear flight control for fly wing UAV[D].Xi'an: Northwestern Polytechnical University, 2015: 72-77(in Chinese). https://wenku.baidu.com/view/a8afa51d777f5acfa1c7aa00b52acfc788eb9f5c.html
    [2] 杨洁.高阶滑模控制理论及其在欠驱动系统中的应用研究[D].北京: 北京理工大学, 2015: 68-72. http://www.bigengculture.com/shoufeilunwen/jckxbs/312170.html

    YANG J.Higher-order sliding mode control theory and its application on under actuated systems[D].Beijing: Beijing Institute of Technology, 2015: 68-72(in Chinese). http://www.bigengculture.com/shoufeilunwen/jckxbs/312170.html
    [3] 陈炳龙.基于二阶滑模算法的航天器相对位姿耦合控制研究[D].哈尔滨: 哈尔滨工业大学, 2015: 77-83. https://wenku.baidu.com/view/9d29b85e4b7302768e9951e79b89680202d86b60.html

    CHEN B L.Research on spacecraft relative position and attitude coupled control on the basis of second-order sliding mode algorithm[D].Harbin: Harbin Institute of Technology, 2015: 77-83(in Chinese). https://wenku.baidu.com/view/9d29b85e4b7302768e9951e79b89680202d86b60.html
    [4] 李鹏.传统和高阶滑模控制研究及其应用[D].长沙: 国防科技大学, 2011: 73-78. https://max.book118.com/html/2017/0316/95630926.shtm

    LI P.Research on application of traditional and high-order sliding mode control[D].Changsha: National University of Defense Technology, 2011: 73-78(in Chinese). https://max.book118.com/html/2017/0316/95630926.shtm
    [5] 韩耀振.不确定非线性系统高阶滑模控制及其在电力系统中的应用[D].北京: 华北电力大学, 2017: 20-21.

    HAN Y Z.Uncertain nonlinear system higher-order sliding mode control and its application in power system[D].Beijing: North China Electric Power University, 2017: 20-21(in Chinese).
    [6] 李炯, 张涛, 雷虎民, 等.非奇异快速终端二阶滑模有限时间制导律[J].系统工程与电子技术, 2018, 40(4):860-867. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201804021

    LI J, ZHANG T, LEI H M, et al.Nonsingular fast terminal second order sliding mode guidance law with finite time convergence[J].System Engineering and Electronics, 2018, 40(4):860-867(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201804021
    [7] 叶继坤, 雷虎民, 赵岩, 等.基于二阶滑模控制的微分几何制导律[J].系统工程与电子技术, 2017, 39(4):837-845. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201704020

    YE J K, LEI H M, ZHAO Y, et al.Differential geometric guidance law based on second-order sliding control[J].System Engineering and Electronics, 2017, 39(4):837-845(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201704020
    [8] 郭建国, 韩拓, 周军, 等.基于终端角度约束的二阶滑模制导律设计[J].航空学报, 2017, 38(2):320208. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702020

    GUO J G, HAN T, ZHOU J, et al.Second order sliding mode guidance law with impact angle constraint[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):320208(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201702020
    [9] HE S M, LIN D F, WANG J.Continuous second-order sliding mode based impact angle guidance law[J].Aerospace Science and Technology, 2015, 41:199-208. doi: 10.1016/j.ast.2014.11.020
    [10] TENOCH G, JAIME A, LEONID F.Variable gain super-twisting sliding mode control[J].IEEE Transactions on Automatic Control, 2012, 57(8):2100-2105. doi: 10.1109/TAC.2011.2179878
    [11] MORENO J A, OSORIO M.Strict Lyapunov functions for the super-twisting algorithm[J].IEEE Transactions on Automatic Control, 2012, 57(4):1035-1040. doi: 10.1109/TAC.2012.2186179
    [12] SHTESSEL Y, TALEB M, PLESTAN F.A novel adptive-gain supertwisting sliding mode controller:Methodology and application[J].Automatica, 2012, 48:759-769. doi: 10.1016/j.automatica.2012.02.024
    [13] POLYAKOV A, POZNYAK A.Reaching time estimation for "Super-Twisting" second order sliding mode controller via Lyapunov function designing[J].IEEE Transactions on Automatic Control, 2009, 54(8):1951-1955. doi: 10.1109/TAC.2009.2023781
    [14] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A.Guidance and control of missile interceptor using second-order sliding modes[J].IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1):110-124. doi: 10.1109/TAES.2009.4805267
    [15] WANG Z.Adaptive smooth second-order sliding mode control method with application to missile guidance[J].Transactions of the Institute of Measurement and Control, 2017, 39(6):848- 860. doi: 10.1177/0142331215621616
    [16] LEVANT A.Sliding order and sliding accuracy in sliding mode control[J].International Journal of Control, 1993, 58(6):1247-1263. doi: 10.1080/00207179308923053
    [17] 杨鹏飞, 方洋旺, 伍友利, 等.随机快速光滑二阶滑模末制导律设计[J].国防科技大学学报, 2017, 39(4):131-138. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201704020

    YANG P F, FANG Y W, WU Y L, et al.Terminal guidance law design of stochastic fast smooth second-ordersliding modes[J].Journal of National University of Defense Technology, 2017, 39(4):131-138(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201704020
    [18] SHTESSEL Y, TOURNES C, SHKOLNIKOV I.Guidance and autopilot for missile steered by aerodynamic lift and divert thrusters using second order sliding modes: AIAA-2006-6784[R].Reston: AIAA, 2006.
    [19] SHTESSEL Y, KOCHALUMMOOTTIL J, EDWARDS C.Continuous adaptive finite reaching time control and second-order sliding modes[J].IMA Journal of Mathematical Control and Information, 2013, 30(1):97-113. doi: 10.1093/imamci/dns013
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  205
  • PDF下载量:  605
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 录用日期:  2019-01-23
  • 网络出版日期:  2019-07-20

目录

    /

    返回文章
    返回
    常见问答