留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼身融合布局客机客舱布置快速生成原型系统

祝雯生 余雄庆

祝雯生, 余雄庆. 翼身融合布局客机客舱布置快速生成原型系统[J]. 北京航空航天大学学报, 2020, 46(3): 515-523. doi: 10.13700/j.bh.1001-5965.2019.0200
引用本文: 祝雯生, 余雄庆. 翼身融合布局客机客舱布置快速生成原型系统[J]. 北京航空航天大学学报, 2020, 46(3): 515-523. doi: 10.13700/j.bh.1001-5965.2019.0200
ZHU Wensheng, YU Xiongqing. A prototype for rapid generation of cabin layout of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 515-523. doi: 10.13700/j.bh.1001-5965.2019.0200(in Chinese)
Citation: ZHU Wensheng, YU Xiongqing. A prototype for rapid generation of cabin layout of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 515-523. doi: 10.13700/j.bh.1001-5965.2019.0200(in Chinese)

翼身融合布局客机客舱布置快速生成原型系统

doi: 10.13700/j.bh.1001-5965.2019.0200
基金项目: 中国商飞北京民用飞机技术研究中心民用飞机设计数字仿真技术北京市重点实验室开放课题
详细信息
    作者简介:

    祝雯生, 男, 博士研究生。主要研究方向:飞行器总体设计、飞行器多学科设计优化

    余雄庆, 男, 博士, 教授, 博士生导师。主要研究方向:飞行器总体设计、飞行器多学科设计优化

    通讯作者:

    余雄庆, E-mail: yxq@nuaa.edu.cn

  • 中图分类号: V223+.2

A prototype for rapid generation of cabin layout of blended wing body aircraft

Funds: Funded by Beijing Key Laboratory of Civil Aircraft Design and Simulation Technology, Beijing Aeronautical Science & Technology Research Institute, Commercial Aircraft Corporation of China
More Information
  • 摘要:

    翼身融合布局(BWB)客机的客舱布置方案在很大程度上决定了其气动外形,筛选出一种合理的客舱布置方案是BWB客机概念设计的一项重要任务。为了提高BWB客机客舱布置设计的效率,应用基于知识工程(KBE)的方法,将BWB客机客舱布置的知识和规范融入在客舱布置几何模型创建过程中,开发出了一个BWB客机客舱布置快速生成的原型系统。分别以300座和400座BWB客机为例,验证该原型系统的有效性。结果表明,只需输入客舱布置设计要求和主要参数,该原型系统即可自动地生成客舱布置方案。所开发的原型系统为BWB客机客舱设计提供了一种快速的途径。

     

  • 图 1  BWB客机客舱布置在多学科综合设计的地位

    Figure 1.  Role of cabin layout in multidisciplinary integrated design for BWB aircraft

    图 2  BWB客机客舱布置快速生成原型系统框架

    Figure 2.  Framework of prototype for rapid generation of BWB aircraft cabin layout

    图 3  客舱布置知识库的结构

    Figure 3.  Architecture of knowledge base for cabin layout

    图 4  座椅图生成过程(截面视图)

    Figure 4.  Process of seats drawing (section view)

    图 5  座椅生成过程(俯视图)

    Figure 5.  Process of seats drawing (top view)

    图 6  客舱布置快速生成原型系统的用户界面

    Figure 6.  User interface of prototype for rapid generation of cabin layout

    图 7  BWB客机客舱布置的设计流程图

    Figure 7.  Design flowchart of cabin layout for BWB aircraft

    图 8  典型的BWB客机客舱布置方案

    Figure 8.  Typical cabin layout schemes for BWB aircraft

    图 9  座椅尺寸定义

    Figure 9.  Definition of seat dimensions

    图 10  客舱截面示意图及关键点位置

    Figure 10.  Schematic diagram of cabin cross-section and location of key points

    图 11  300座级BWB客机客舱布置

    Figure 11.  Cabin layout of BWB aircraft with 300 seats

    图 12  400座级BWB客机客舱布置

    Figure 12.  Cabin layout of BWB aircraft with 400 seats

    表  1  客舱布置输入参数

    Table  1.   Input parameters of cabin layout

    输入参数 300座级 400座级
    乘客数 300 400
    航程/km 10 000 11 000
    机头长径比 0.8 0.8
    前缘后掠角/(°) 65 60
    座舱等级 商务+经济 头等+商务+经济
    每排座位数 商务4/经济6 头等3/商务4/经济5
    乘客比例/% 商务15 头等6/商务15
    过道宽/m 经济0.5 经济0.5
    过道高/m 经济2.2 经济2.2
    座椅排距/m 商务1.2/经济0.8
    头等1.5/商务1.2/
    经济0.8
    集装箱类型 LD-8型 LD-4型
    地板厚/m 0.15 0.15
    出口类型 A型(前)/A型(后) A型(前)/A型(后)
    应急通道宽度/m 0.8(前)/0.6(后) 1(前)/0.6(后)
    下载: 导出CSV
  • [1] LIEBECK R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2004, 41(1):10-25. doi: 10.2514/1.9084
    [2] QIN N, VAVALLE A, MOIGNE A L, et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences, 2004, 40(6):321-343. doi: 10.1016/j.paerosci.2004.08.001
    [3] BRADLEY K R.A sizing methodology for the conceptual design of blended-wing-body transports: NASA/CR-2004-213016[R].Washington, D.C.: NASA, 2004.
    [4] EELMAN S, SCHMITT D.Future requirements and concepts for cabin of blended wing body configurations-A scenario approach[J].Journal of Air Transportation, 2004, 9(2):4-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211739877
    [5] VAN DER VOET Z, GEUSKENS F J J M M, AHMED T J.Configuration of the multibubble pressure cabin in blended wing body aircraft[J].Journal of Aircraft, 2012, 49(4):991-1007. doi: 10.2514/1.C031442
    [6] 廖慧君, 张曙光.翼身融合布局客机的客舱设计[J].北京航空航天大学学报, 2009, 35(8):986-989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb200908019

    LIAO H J, ZHANG S G.Design of cabin layout for blended wing body passenger transports[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8):986-989(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb200908019
    [7] 潘立军, 吴大卫, 潭兆光, 等.基于适航符合性的翼身融合布局客机客舱布置设计[J].航空学报, 2019, 49(9):623044. http://d.old.wanfangdata.com.cn/Periodical/hkxb201909004

    PAN L J, WU D W, TAN Z G, et al.Cabin layout design for BWB civil aircraft based on airworthiness compliance[J].Acta Aeronautica et Astronautica Sinica, 2019, 49(9):623044(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201909004
    [8] LA ROCCA G.Knowledge based engineering:Between AI and CAD.Review of a language based technology to support engineering design[J].Advanced Engineering Informatics, 2012, 26(2):159-179. doi: 10.1016/j.aei.2012.02.002
    [9] MUNJULURY R C, STAACK I, BERRY P, et al.A knowledge-based integrated aircraft conceptual design framework[J].CEAS Aeronautical Journal, 2016, 7(1):95-105. doi: 10.1007/s13272-015-0174-z
    [10] CHAPMAN C B, PINFOLD M.The application of a knowledge-based engineering approach to the rapid design and analysis of an automotive structure[J].Advances in Engineering Software, 2001, 32(12):903-912. doi: 10.1016/S0965-9978(01)00041-2
    [11] 王海强, 王敏, 吴洋.基于知识工程的机身重量估算方法[J].机械设计与制造工程, 2017, 46(3):96-99. doi: 10.3969/j.issn.2095-509X.2017.03.020

    WANG H Q, WANG M, WU Y.Implementation of a KBE-based fuselage weight estimation method[J].Machine Design and Manufacturing Engineering, 2017, 46(3):96-99(in Chinese). doi: 10.3969/j.issn.2095-509X.2017.03.020
    [12] 王刚, 张彬乾, 张明辉, 等.翼身融合民机总体气动技术研究进展与展望[J].航空学报, 2019, 40(9):623046. http://d.old.wanfangdata.com.cn/Periodical/hkxb201909001

    WANG G, ZHANG B Q, ZHANG M H, et al.Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(9):623046(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201909001
    [13] 潘立军.客机概念设计系统的若干模块开发[D].南京: 南京航空航天大学, 2014: 49-51.

    PAN L J.Several modules development for a conceptual design system of civil jets[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 49-51(in Chinese).
    [14] TORENBEEK E.Synthesis of subsonic airplane design[M].Delft:Delft University Press, 1982:75-76.
    [15] SCHAUFELE R D.The elements of aircraft preliminary design[M].Santa Ana:Aries Publications, 2000:121-131.
    [16] JENKINSON L R, SIMPKIN P, RHODES D, et al.Civil jet aircraft design[M].London:Arnold, 1999:87-93.
    [17] RAYMER D P.Aircraft design: A conceptual approach[M].5th ed.Reston: AIAA, 2012: 269-270.
    [18] ROSKAM J.Airplane design: Part Ⅱ-Ⅲ[M].Kansas: Roskam Aviation and Engineering Corporation, 1985: 59, 73-75, 110.
    [19] 中国民用航空局.中国民用航空规章第25部: 运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空局, 2011.

    Civil Aviation Administration of China.Part 25 of China civil aviation regulations: Transport airplane airworthiness criterion: CCAR-25-R4[S].Beijing: Civil Aviation Administration of China, 2011(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  133
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 网络出版日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答