北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (11): 2026-2038.doi: 10.13700/j.bh.1001-5965.2020.0138

• 论文 • 上一篇    下一篇

FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证

申春梅1,2, 于峰1,2, 刘文凯1,2   

  1. 1. 北京空间机电研究所, 北京 100094;
    2. 先进光学遥感技术北京市重点实验室, 北京 100094
  • 收稿日期:2020-04-13 发布日期:2020-12-01
  • 通讯作者: 申春梅 E-mail:123855964@qq.com
  • 作者简介:申春梅,女,博士,高级工程师。主要研究方向:空间光学遥感器热设计、热控新技术及新产品研发。

Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite

SHEN Chunmei1,2, YU Feng1,2, LIU Wenkai1,2   

  1. 1. Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China;
    2. Key Laboratory for Advanced Optical Remote Sensing Technology of Beijing, Beijing 100094, China
  • Received:2020-04-13 Published:2020-12-01

摘要: FY-3D卫星高光谱温室气体监测结构布局紧凑,在较小尺寸空间内布置有8个镜头组件、12台电子设备和3台电机。内热源数量众多,光学镜头控温精度要求高,热控功耗及散热面资源紧张,使热控系统设计难度较大。基于热管理、辐射间接热控、辐射冷却及结构热控协同优化设计等多种思路对监测仪热控系统进行设计,有效解决热控难题。入轨后监测仪历经了多个工况模式切换,在轨温度数据表明,所有工况模式下各部组件温度都满足指标要求,且光学镜头温度稳定度较高,在正常工作模式下,干涉仪关键件最大温度波动在±0.15℃以内,其他光学镜头组件最大温度波动在±0.45℃以内,且无论整轨待机模式还是正常工作模式,基于热管理的2组电子设备散热系统都无需消耗热控功耗,实现了多热源复杂机制下高精度控温及节能热设计。

关键词: 空间光学遥感器, 温室气体监测仪, 热控, 热管理, 辐射间接热控, 高精度控温

Abstract: The structure layout of hyperspectral greenhouse gas monitor on FY-3D satellite is very compact. There are eight optical lens, twelve electronic devices and three motors in the small-scale space. There are so many optical lens with high-precision temperature control requirement and so many heat source equipment. And thermal control resources such as heating power and radiator layout space are limited. These above characteristics make thermal control system design of hyperspectral greenhouse gas monitor a challenge. Thermal control system was designed based on multiple design methods including thermal management, indirect radiation thermal control, radiation cooling and collaborative optimization design of integrated structural and thermal control. Thermal control difficult problems were solved effectively. Hyperspectral greenhouse gas monitor experienced multiple operating modes after entering orbit. On-orbit temperature data show that all components' temperatures meet the requirements, and optical lens have high temperature stability under all the experienced operating modes. The maximum temperature fluctuation of interferometer is within ±0.15℃ under normal operating mode, and it is within ±0.45℃ for other optical lens. Furthermore, no matter under standby mode in a whole orbit period or normal operating mode, the heat dissipation systems of two sets of electronic device designed based on thermal management do not need to consume thermal control power resources. High-precision thermal control and energy saving thermal design are realized under the condition of multiple heat sources and complex working mechanism.

Key words: space optical remote sensor, greenhouse gas monitor, thermal control, thermal management, indirect radiation thermal control, high-precision temperature control

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发