留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证

申春梅 于峰 刘文凯

申春梅, 于峰, 刘文凯等 . FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138
引用本文: 申春梅, 于峰, 刘文凯等 . FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138
SHEN Chunmei, YU Feng, LIU Wenkaiet al. Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138(in Chinese)
Citation: SHEN Chunmei, YU Feng, LIU Wenkaiet al. Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138(in Chinese)

FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证

doi: 10.13700/j.bh.1001-5965.2020.0138
详细信息
    作者简介:

    申春梅  女, 博士, 高级工程师。主要研究方向:空间光学遥感器热设计、热控新技术及新产品研发

    通讯作者:

    申春梅, E-mail: 123855964@qq.com

  • 中图分类号: V423.4

Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite

More Information
  • 摘要:

    FY-3D卫星高光谱温室气体监测结构布局紧凑,在较小尺寸空间内布置有8个镜头组件、12台电子设备和3台电机。内热源数量众多,光学镜头控温精度要求高,热控功耗及散热面资源紧张,使热控系统设计难度较大。基于热管理、辐射间接热控、辐射冷却及结构热控协同优化设计等多种思路对监测仪热控系统进行设计,有效解决热控难题。入轨后监测仪历经了多个工况模式切换,在轨温度数据表明,所有工况模式下各部组件温度都满足指标要求,且光学镜头温度稳定度较高,在正常工作模式下,干涉仪关键件最大温度波动在±0.15℃以内,其他光学镜头组件最大温度波动在±0.45℃以内,且无论整轨待机模式还是正常工作模式,基于热管理的2组电子设备散热系统都无需消耗热控功耗,实现了多热源复杂机制下高精度控温及节能热设计。

     

  • 图 1  监测仪结构布局及卫星平台载荷布局

    Figure 1.  Structure layout of monitor and payloads deployment on satellite platform

    图 2  二维指向镜光机组件及其音圈电机结构示意图

    Figure 2.  Schematic diagram of structure of two-axis gimbaled mirror components and its voice coil motor

    图 3  干涉仪光机组件及其音圈电机结构示意图

    Figure 3.  Schematic diagram of structure of interferometer components and its voice coil motor

    图 4  监测仪热控系统

    Figure 4.  Thermal control system of monitor

    图 5  二维指向镜音圈电机散热方案示意图

    Figure 5.  Schematic diagram of heat dissipation scheme of two-axis gimbaled mirror components voice coil motor

    图 6  摆臂音圈电机线圈组件优化安装及散热方式

    Figure 6.  Optimized installation and heat dissipation mode of coil block of swing arm voice coil motor

    图 7  干涉仪摆臂音圈电机散热方案示意图

    Figure 7.  Schematic diagram of heat dissipation scheme of interferometer swing arm voice coil motor

    图 8  增强隔热安装方式示意图

    Figure 8.  Schematic diagram of enhanced insulation installation method

    图 9  生存模式下监测仪典型部组件在轨温度曲线

    Figure 9.  Curves of monitor components temperature over time under survival mode case

    图 10  各工况模式下监测仪部组件温度随时间变化曲线

    Figure 10.  Curves of monitor components' temperature over time under different operating modes

    表  1  入轨后监测仪经历的工况模式

    Table  1.   Summary of operating modes experienced by monitor after entering orbit

    在轨开始时刻 模式名称 模式描述
    2017-11-15T04:30 生存模式 入轨初期,卫星平台进行姿态调整、太阳帆板展开等飞行调试工作,监测仪进入生存模式
    2017-11-25T20:13 整轨关机模式 监测仪管理控制器和温度控制器(都放置在卫星舱内)开机,监测仪进入整轨关机模式
    2017-11-26T09:53 整轨待机模式 监测仪内部计量激光器和探测器半导体制冷控制器开机,监测仪进入整轨待机模式
    2017-11-26T11:34 正常工作模式 监测仪进入“待机模式→观测模式→定标模式→待机模式”的正常工作流程
    下载: 导出CSV

    表  2  正常工作模式下监测仪内部热源工作热耗及工作时间

    Table  2.   Heat consumption and operating time of calorigenic equipment in monitor under normal operating mode

    部组件名称 热耗/W 工作时间/(min·轨-1)
    待机 观测 定标
    半导体制冷控制器 11 11 11 102
    激光信号处理器 0 3 3 68
    谱段1探测器电路盒 0 0.3 0.3 63
    谱段2探测器电路盒 0.9 1.2 1.2 102
    谱段3探测器电路盒 0.9 1.2 1.2 102
    谱段4探测器电路盒 0.9 1.2 1.2 102
    定标控制器 0 0 4 3
    红外信息处理器 0 20 20 63
    定标控制器DCDC 0 0 21.1 3
    计量激光器 8 8 8 102
    监视相机 0 4 4 52
    激光探测器 0 0.21 0.21 68
    二维指向镜步进电机 0 1.6 1.6 51
    二维指向镜音圈电机 0 2.0 2.0 51
    干涉仪摆臂音圈电机 0 1.0 1.0 58.2
    下载: 导出CSV

    表  3  监测仪各部组件控温指标要求

    Table  3.   Temperature control requirements of monitor components

    部组件名称 温度/℃
    生存模式 正常工作模式
    主镜、次镜、谱段1~谱段4透镜 0~40 20±2
    二维指向镜镜体 0~40 19±3
    干涉仪 0~40 20±1,摆臂左右分支温差≤0.5℃
    探测器组件电路盒 -20~40 0~20
    其他电子设备 -15~55 -10~45
    二维指向镜步进电机 -10~80 -10~80
    二维指向镜音圈电机 0~85 0~85
    干涉仪摆臂音圈电机 0~75 0~75
    下载: 导出CSV

    表  4  监测仪生存加热回路

    Table  4.   Summary of survival heating circuits of monitor

    加热区域 回路路数 功率/W 备注
    底板4端面 4 4.0 由卫星平台直接控制,常开
    外罩内表面 7 16.7
    半导体制冷控制器盒体 1 6.8
    红外信息处理器盒体 1 7.0
    计量激光器散热热管表面 1 5.0
    监视相机散热热管表面 1 2.0
    探测器电路盒散热热管表面 1 4.0
    辐射冷屏散热热管表面 1 5.0
    下载: 导出CSV

    表  5  监测仪主动控温加热回路

    Table  5.   Summary of active temperature control heating circuits of monitor

    加热区域 回路路数 功率/W 控温阈值/℃ 备注
    底板上、下表面 5 15.9 [19.8,20.2] 由监测仪温度控制器控制主动控温
    外罩外表面 11 31.4 [19.8,20.2]
    分色汇聚组件镜筒 2 4.4 [19.8,20.2]
    激光信号处理器盒体 1 7.0 [8.8,9.2]
    探测器电路盒 1 7.0 [9.8,10.2]
    计量激光器电路盒 1 7.9 [7.3,7.7]
    监视相机电路盒 1 3.0 [7.1,7.5]
    辐射冷屏 1 6.0 [9.8,10.2]
    下载: 导出CSV

    表  6  生存模式稳定状态下监测仪遥测温度

    Table  6.   Summary of monitor telemetered temperature under steady survival mode

    部组件名称 温度/℃ 温度波动/℃ 控温指标/℃
    半导体制冷控制器 5.2~10.3 5.1 -15~55
    红外信息处理器 8.1~10.7 2.6 -15~55
    计量激光器 9.9~12.9 3.0 -15~55
    监视相机 9.6~12.9 3.3 -15~55
    谱段4探测器电路盒 8.3~12.3 4.0 -20~40
    二维指向镜 16.6~18.6 2.0 0~40
    干涉仪基座 19.3~19.7 0.4 0~40
    主镜 19.8~20.2 0.4 0~40
    下载: 导出CSV

    表  7  不同模式状态下监测仪遥测温度

    Table  7.   Summary of monitor telemetered temperature under different operating modes

    部组件名称 遥测温度/℃ 控温指标
    整轨关机模式 整轨待机模式 正常工作模式
    主镜 19.8~20.2 19.8~20.2 20.6 20±2
    谱段4透镜 19.7~19.9 19.3~19.8 19.5~19.9 20±2
    谱段3透镜 19.8~19.9 19.3~19.8 19.4~19.9 20±2
    谱段2透镜 19.8~20.2 19.8~20.2 19.8~20.1 20±2
    次镜 20.4~21.1 20.4~21.0 20.6~21.5 20±2
    二维指向镜 17.7~18.6 17.7~18.6 19.0~20.5 19±3
    干涉仪摆臂端部1 20.1~20.3 20.1~20.3 20.2~20.4 20±1,摆臂
    干涉仪摆臂端部2 20.1~20.2 20.1~20.2 20.1~20.2 左右分支
    干涉仪摆臂中部 19.7~19.8 19.7~19.8 20.1~20.2 温差
    干涉仪基座 19.6~19.7 19.6~19.7 20.1~20.2 ≤0.5
    谱段4探测器电路盒 7.6~10.1 9.7~11.2 9.2~10.8 0~20
    谱段3探测器电路盒 7.6~10.2 8.9~10.2 9.2~10.9 0~20
    谱段2探测器电路盒 7.6~10.1 8.9~10.1 9.1~10.9 0~20
    谱段1探测器电路盒 7.6~10.3 8.8~10.4 9.1~11.0 0~20
    半导体制冷控制器 -2.2~2.6 -0.3~7.0 9.5~14.3 -10~45
    激光信号处理器 9.1~9.2 9.2~13.2 21.1~22.4 -10~45
    红外信息处理器 4.2~5.9 4.5~7.0 18.2~21.7 -10~45
    计量激光器 6.2~7.5 7.1~11.4 19.2~21.4 -10~45
    监视相机 6.9~7.7 7.3~9.9 15.7~20.0 -10~45
    二维指向镜步进电机 18.6~18.7 18.6~18.7 25.6~33.4 -10~80
    摆臂音圈电机磁缸及线圈铝骨架 17.1~17.7 17.1~17.7 19.8~22.8 0~75
    下载: 导出CSV
  • [1] 闵桂荣.卫星热控制技术[M].北京:中国宇航出版社, 1991:8-11.

    MIN G R.Satellite thermal control technology[M].Beijing:China Astronautic Publishing House, 1991:8-11(in Chinese).
    [2] DAVID G.Spacecraft thermal control handbook.Volume Ⅰ:Fundamental technologies[M].EI Segundo:The Aerospace Press, 2002:21-67.
    [3] 李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870.

    LI C L.Research on space optical remote sensor thermal control technique[J].Journal of Astronautics, 2014, 35(8):863-870(in Chinese).
    [4] 赵振明, 鲁盼, 宋欣阳."高分二号"卫星相机热控系统的设计与验证[J].航天返回与遥感, 2015, 36(4):34-40. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201504010.htm

    ZHAO Z M, LU P, SONG X Y.Themal design and test for high resolution space space optical camera on GF-2 satellite[J].Spacecraft Recovery & Remote Sensing, 2015, 36(4):34-40(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201504010.htm
    [5] 于峰, 徐娜娜, 赵宇, 等."高分四号"卫星相机热控系统设计及验证[J].航天返回与遥感, 2016, 37(4):72-79. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201604010.htm

    YU F, XU N N, ZHAO Y, et al.Thermal design and test for space optical camera on GF-4 satellite[J].Spacecraft Recovery & Remote Sensing, 2016, 37(4):72-79(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201604010.htm
    [6] 陈维春, 王海星.大型三反离轴相机热控设计及在轨飞行验证[J].光学仪器, 2015, 37(2):116-131. http://www.cnki.com.cn/Article/CJFDTotal-GXYQ201502006.htm

    CHEN W C, WANG H X.Verification of thermal design and in-orbit flight for large off-axis triple-mirror anastigmatic space optical camera[J].Optical Instruments, 2015, 37(2):116-131(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GXYQ201502006.htm
    [7] 张月, 王超, 苏云, 等.地球静止轨道甚高分辨率成像系统热控方案[J].红外与激光工程, 2014, 43(9):3116-3121. http://www.cnki.com.cn/Article/CJFDTotal-HWYJ201409059.htm

    ZHANG Y, WANG C, SU Y, et al.Thermal control scheme for ultrahigh resolution imaging system on geosynchronous orbit[J].Infrared and Laser Engineering, 2014, 43(9):3116-3121(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HWYJ201409059.htm
    [8] LIU W Y, DING Y L, WU Q W, et al.Thermal analysis and design of the aerial space optical camera's primary optical system components[J].Applied Thermal Engineering, 2012, 38(4):40-47.
    [9] 王兵, 李春林, 阳明.空间相机热管理技术[C]//第二十三届全国空间探测学术交流会, 2010: 1-5.

    WANG B, LI C L, YANG M.Thermal management technique of space camera[C]//The 23th National Space Detection Academic Conference, 2010: 1-5(in Chinese).
    [10] 范含林.载人航天器热管理技术发展综述[J].航天器工程, 2007, 16(1):28-32. http://www.cqvip.com/Main/Detail.aspx?id=23770164

    FAN H L.Manned spacecraft thermal management technologies development overview[J].Spacecraft Engineering, 2007, 16(1):28-32(in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=23770164
    [11] 徐小平, 李劲东, 范含林.大型航天器热管理系统集成分析[J].中国空间科学技术, 2004, 24(6):11-17.

    XU X P, LI J D, FAN H L.Integrated analysis of thermal management system in large spacecraft[J].Chinese Space Science and Technology, 2004, 24(6):11-17(in Chinese).
    [12] 申春梅, 李春林, 高长春.某空间光谱仪热管理初析[J].航天返回与遥感, 2012, 33(6):80-85. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201206018.htm

    SHEN C M, LI C L, GAO C C.Thermal management of calorigenic eqiupments in space spectral imager[J].Spacecraft Recovery & Remote Sensing, 2012, 33(6):80-85(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201206018.htm
    [13] 郭亮, 吴清文, 黄勇, 等.热管理技术在紫外成像光谱仪热控制中的应用[J].光学精密工程, 2014, 22(7):1877-1885. http://www.cnki.com.cn/Article/CJFDTotal-GXJM201407025.htm

    GUO L, WU Q W, HUANG Y, et al.Application of thermal management technique to thermal control for ultraviolet imaging spectrometers[J].Optics and Precision Engineering, 2014, 22(7):1877-1885(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GXJM201407025.htm
    [14] 宋欣阳, 高娟, 赵振明, 等.间接热控在高分辨率光学遥感器恒温控制中的应用[J].航天返回与遥感, 2015, 36(2):46-52. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201502009.htm

    SONG X Y, GAO J, ZHAO Z M, et al.Application of indirect thermal control technology for constant temperature control of HR optical remote sensor[J].Spacecraft Recovery & Remote Sensing, 2015, 36(2):46-52(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201502009.htm
    [15] SHEN C M, LIU W K.Integrated thermal design of one space optical remaote sensor[C]//4th International Symposium of Space Optical Instruments and Applications, 2017: 75-83.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  66
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-05-25
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答