留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全向移动机器人动态避障方法

张大志 刘万辉 缪存孝 余远金

张大志, 刘万辉, 缪存孝, 等 . 全向移动机器人动态避障方法[J]. 北京航空航天大学学报, 2021, 47(6): 1115-1123. doi: 10.13700/j.bh.1001-5965.2020.0155
引用本文: 张大志, 刘万辉, 缪存孝, 等 . 全向移动机器人动态避障方法[J]. 北京航空航天大学学报, 2021, 47(6): 1115-1123. doi: 10.13700/j.bh.1001-5965.2020.0155
ZHANG Dazhi, LIU Wanhui, MIAO Cunxiao, et al. Dynamic obstacle avoidance method for omnidirectional mobile robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1115-1123. doi: 10.13700/j.bh.1001-5965.2020.0155(in Chinese)
Citation: ZHANG Dazhi, LIU Wanhui, MIAO Cunxiao, et al. Dynamic obstacle avoidance method for omnidirectional mobile robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1115-1123. doi: 10.13700/j.bh.1001-5965.2020.0155(in Chinese)

全向移动机器人动态避障方法

doi: 10.13700/j.bh.1001-5965.2020.0155
基金项目: 

中央高校基本科研业务费专项资金 FRF-TP-17-052A1

详细信息
    通讯作者:

    余远金. E-mail: buaayyj@126.com

  • 中图分类号: TP242.6

Dynamic obstacle avoidance method for omnidirectional mobile robots

Funds: 

the Fundamental Research Funds for the Central Universities FRF-TP-17-052A1

More Information
  • 摘要:

    动态避障是全向移动机器人在复杂工作环境下不可或缺的能力。针对在复杂动态环境下传统人工势场法容易陷入局部极小点、目标点不可达和振荡等问题,提出了利用水流场的思想重新定义人工势场的斥力势场函数及其方向,改进方法在不增加计算量的情况下能够使机器人平滑且安全无碰撞到达目标点,实现避障过程。为了实现三维动态仿真,提出了一种基于V-REP与MATLAB的联合仿真方法,并结合改进人工势场法实现全向移动机器人的动态避障模拟,验证了方法的平滑性和可行性。将所提方法应用于实验室内真实场景,全向移动机器人成功实现了动态规避动作,验证了方法的实用性。

     

  • 图 1  移动机器人在人工势场中受力示意图

    Figure 1.  Schematic diagram of forces on mobile robot in artificial potential field

    图 2  算法陷入局部极小示意图[18]

    Figure 2.  Schematic diagram of algorithm with local minima[18]

    图 3  目标点不可达示意图[19]

    Figure 3.  Schematic diagram of unreachable target point[19]

    图 4  轨迹振荡问题示意图[20]

    Figure 4.  Schematic diagram of trajectory oscillation[20]

    图 5  水流场示意图

    Figure 5.  Schematic diagram of water flow field

    图 6  水流场坐标系

    Figure 6.  Water flow field based coordinate system

    图 7  水流场坐标系下的斥力场

    Figure 7.  Repulsive force field in water flow field based coordinate system

    图 8  障碍物重叠问题示意图

    Figure 8.  Schematic diagram of obstacle overlap

    图 9  两种方法的仿真结果

    Figure 9.  Simulation results of two methods

    图 10  全向移动机器人模型

    Figure 10.  Omnidirectional mobile robot model

    图 11  仿真环境

    Figure 11.  Simulation scenario

    图 12  关键时刻的运动轨迹

    Figure 12.  Movement trajectory at key moments

    图 13  世界坐标系下xy轴方向的位移与速度

    Figure 13.  Displacement and velocity in the direction of x and y axis in world coordinate system

    图 14  关键时刻实验结果示意图

    Figure 14.  Schematic diagram of experimental results at key moments

    表  1  方法参数

    Table  1.   Algorithm parameters

    参数 数值
    引力场比例系数katt 15
    斥力场比例系数krep 25
    障碍物作用半径d0/cm 30
    优化参数n 2
    步长l 3
    下载: 导出CSV

    表  2  V-REP仿真参数

    Table  2.   V-REP simulation parameters

    参数 数值
    katt 20
    krep 3
    d0/m 0.6
    n 5
    vmax/(m·s-1) 5
    av 0.1
    ωmax/(rad·s-1) 0.9
    αω 0.4
      注:vmax为移动机器人最大运动速度;av为移动机器人加速度系数;ωmax为移动机器人最大转弯角速度;αω为移动机器人角加速度系数。
    下载: 导出CSV

    表  3  实验参数

    Table  3.   Parameters in experiment

    参数 数值
    katt 15
    krep 5
    d0/m 0.5
    n 2
    vmax/(m·s-1) 0.2
    下载: 导出CSV
  • [1] QIAN J, ZI B, WANG D, et al. The design and development of an omnidirectional mobile robot oriented to an intelligent manufacturing system[J]. Sensors, 2017, 17(9): 2073. doi: 10.3390/s17092073
    [2] DAI X L, LONG S, ZHANG Z W, et al. Mobile robot path planning based on ant colony algorithm with A* heuristic method[J/OL]. Frontiers in Neurorobotics, 2019(2019-04-16)[2020-04-01]. https://doi.org/10.3389/fnbot.2019.00015.
    [3] WEI W Q. Research on path planning of mobile robot based on artificial neural network[C]//20192nd International Conference on Intelligent Systems Research and Mechatronics Engineering. London: Francis Academic Press, 2019: 433-436.
    [4] LLEWYN S, DAVID H, GIACOMO I, et al. Parameter optimization and learning in a spiking neural network for UAV obstacle avoidance targeting neuromorphic processors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3305-3318. doi: 10.1109/TNNLS.2019.2941506
    [5] DOORAKI A R, LEE D J. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments[J]. Sensors, 2018, 18(10): 2-17. doi: 10.1109/JSEN.2018.2815425
    [6] MIHAI D, MOGAN G. Neural networks based reinforcement learning for mobile robots obstacle avoidance[J]. Expert Systems with Applications, 2016, 62: 104-115. doi: 10.1016/j.eswa.2016.06.021
    [7] QIANG N, GAO J. A new method for mobile robot path planning based on particle swarm optimization algorithm[C]//20172nd International Conference on Advances in Materials Mechatronics and Civil Engineering. Amsterdam: Atlantis Press, 2017, 131: 95-98.
    [8] WANG B F, LI S, GUO J, et al. Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm[J]. Neurocomputing, 2018, 282: 42-51. doi: 10.1016/j.neucom.2017.12.015
    [9] NASRINAHAR A, CHUAH J H. Intelligent motion planning of a mobile robot with dynamic obstacle avoidance[J]. Journal on Vehicle Routing Algorithms, 2018, 1: 89-104. doi: 10.1007/s41604-018-0007-4
    [10] KUNDU S, DDYAL R P. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner[J]. International Journal of Automation and Computing, 2017, 14(3): 307-320. doi: 10.1007/s11633-016-0983-5
    [11] EDUARDO J M, ÁNGEL L, MANUEL O. Dynamic window based approaches for avoiding obstacles in moving[J]. Robotics and Autonomous Systems, 2019, 118: 112-130. doi: 10.1016/j.robot.2019.05.003
    [12] GUO Z T, HU H J, FENG F. 3D path planning for multi-UAV base on artificial potential field method[C]//International Conference on Electronic, Control, Automation and Mechanical Engineering, 2017: 86-91.
    [13] HU X P, LI Z Y, CAO J. A path planning method based on artificial potential field improved by potential flow theory[C]//20172nd International Conference on Computer Science and Technology, 2017: 617-625.
    [14] LAZAROWSKA A. Discrete artificial potential field approach to mobile robot path planning[J]. IFAC PapersOnLine, 2019, 52(8): 277-282. doi: 10.1016/j.ifacol.2019.08.083
    [15] OSCAR M, ULISES O R, ROBERTO S. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles[J]. Expert Systems with Applications, 2015, 42(12): 5177-5191. doi: 10.1016/j.eswa.2015.02.033
    [16] WANG L, LI B J, YIN Z H, et al. An improved artificial potential field for unmanned aerial vehicles path planning[C]//20172nd International Conference on Computer Science and Technology, 2017: 510-515.
    [17] DU Y, NAN Y Y. Research of robot path planning based on improved artificial potential field[C]//Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics. Amsterdam: Atlantis Press, 2016: 1024-1029.
    [18] 罗强, 王海宝, 崔小劲, 等. 改进人工势场法自主移动机器人路径规划[J]. 控制工程, 2019, 26(6): 1091-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201906014.htm

    LUO Q, WANG H B, CUI X J, et al. Improved artificial potential field method for autonomous mobile robot path planning[J]. Control Engineering of China, 2019, 26(6): 1091-1098(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201906014.htm
    [19] 梁献霞, 刘朝英, 宋雪玲, 等. 改进人工势场法的移动机器人路径规划研究[J]. 计算机仿真, 2018, 35(4): 291-294. doi: 10.3969/j.issn.1006-9348.2018.04.063

    LIANG X X, LIU C Y, SONG X L, et al. Research on path planning of mobile robot based on improved artificial potential field method[J]. Computer Simulation, 2018, 35(4): 291-294(in Chinese). doi: 10.3969/j.issn.1006-9348.2018.04.063
    [20] 杨萌, 王玥. 基于改进人工势场法的无人机避让航迹规划[J]. 导航与控制, 2019, 18(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DHKZ201901011.htm

    YANG M, WANG Y. UAV evasion trajectory planning based on improved artificial potential field method[J]. Navigation and Control, 2019, 18(1): 76-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DHKZ201901011.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1110
  • HTML全文浏览量:  191
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 录用日期:  2020-06-19
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答