留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器栖落机动的轨迹跟踪控制及吸引域优化计算

王无天 何真 岳珵

王无天, 何真, 岳珵等 . 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算[J]. 北京航空航天大学学报, 2021, 47(2): 414-423. doi: 10.13700/j.bh.1001-5965.2020.0207
引用本文: 王无天, 何真, 岳珵等 . 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算[J]. 北京航空航天大学学报, 2021, 47(2): 414-423. doi: 10.13700/j.bh.1001-5965.2020.0207
WANG Wutian, HE Zhen, YUE Chenget al. Trajectory tracking control and optimal computation of attraction domain for aircraft in perching maneuvers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 414-423. doi: 10.13700/j.bh.1001-5965.2020.0207(in Chinese)
Citation: WANG Wutian, HE Zhen, YUE Chenget al. Trajectory tracking control and optimal computation of attraction domain for aircraft in perching maneuvers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 414-423. doi: 10.13700/j.bh.1001-5965.2020.0207(in Chinese)

飞行器栖落机动的轨迹跟踪控制及吸引域优化计算

doi: 10.13700/j.bh.1001-5965.2020.0207
基金项目: 

国家自然科学基金 61873126

详细信息
    作者简介:

    王无天  男, 硕士研究生。主要研究方向: 飞行控制

    何真  女, 博士, 副教授, 硕士生导师。主要研究方向: 飞行控制、非线性控制、智能控制

    岳珵  男, 硕士研究生。主要研究方向: 飞行控制

    通讯作者:

    何真. E-mail: hezhen@nuaa.edu.cn

  • 中图分类号: V249

Trajectory tracking control and optimal computation of attraction domain for aircraft in perching maneuvers

Funds: 

National Natural Science Foundation of China 61873126

More Information
  • 摘要:

    针对固定翼飞行器栖落机动的纵向运动,研究了栖落机动轨迹跟踪控制设计与吸引域优化计算方法。首先,根据栖落动力学模型和栖落过程中各个状态量的约束,用广义伪谱法生成标称轨迹,以此为基础设计了分段线性轨迹跟踪控制律。然后,在平方和(SOS)算法的基础上计算出栖落轨迹的吸引域,以保证吸引域内的飞行器能最终栖落在目标区域。最后,进一步改进吸引域的迭代优化计算方法以扩大吸引域范围。仿真结果验证了栖落机动轨迹跟踪控制律的有效性,并表明运用所设计的吸引域优化计算方法可以获得更大的吸引域。

     

  • 图 1  飞行器纵向受力分析图

    Figure 1.  Longitudinal force analysis diagram of UAV

    图 2  状态变量标称曲线

    Figure 2.  Nominal curves of state variables

    图 3  推力和升降舵的偏转角度标称曲线

    Figure 3.  Nominal curves of thrust and rudder angle

    图 4  轨迹跟踪控制框图

    Figure 4.  Trajectory tracking control block diagram

    图 5  控制输入曲线

    Figure 5.  Control input curves

    图 6  状态变量跟踪控制曲线

    Figure 6.  State variable tracking control curves

    图 7  吸引域扩大对比

    Figure 7.  Comparison of expanded attraction domain

    图 8  栖落轨迹及吸引域

    Figure 8.  Perching trajectory and attraction domain

    表  1  状态变量过程约束

    Table  1.   Process constraints of state variables

    状态变量 下限值 上限值
    V/(m·s-1) 0 25
    α/rad -π/2 π/2
    μ/rad -π/4 π/4
    q/(rad·s-1) -3.5 3.5
    x/m 0 15
    h/m 0 10
    δe/rad -π/3 π/3
    下载: 导出CSV

    表  2  飞行器物理参数

    Table  2.   Physical parameters of UAV

    参数 数值
    质量m/kg 0.8
    平均气动弦长c/m 0.25
    展长b/m 1
    升力面积Sl/m2 0.25
    俯仰转动惯量Iy/(kg·m-2) 0.1
    下载: 导出CSV
  • [1] POPE M, TKIMES C W, JIANG H, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017, 33(1): 38-48. doi: 10.1109/TRO.2016.2623346
    [2] FEROSKHAN M, TIAUW H. Control strategy of sideslip perching maneuver under dynamic stall influence[J]. Aerospace Science and Technology, 2018, 72: 150-163. doi: 10.1016/j.ast.2017.11.002
    [3] COLIN G, ANTONY W, THOMS R. Perched landing manoeuvres with a variable sweep wing UAV[J]. Aerospace Science and Technology, 2017, 71: 510-520. doi: 10.1016/j.ast.2017.09.034
    [4] CORY R, TEDRAKE R.Experiments in fixedwing UAV perching[C]//Proceedings of the 33th Chinese Control Conference, 2014: 2047-2056.
    [5] 袁亮, 何真, 王月. 变体无人机栖落机动建模与轨迹优化[J]. 南京航空航天大学学报, 2018, 50(2): 267-275.

    YUAN L, HE Z, WANG Y. Modeling and trajectory optimization of perching maneuvers for morphing UAV[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 267-275(in Chinese).
    [6] ROBEST J W, CORY R, TEDRAKE R.On the controlability of fixedwing perching[C]//American Control Conference, 2009: 2018-2023.
    [7] VENKAESWARA R, TIAUW H. Optimization stability analysis and trajectory tracking of perching maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(7): 879-888. doi: 10.2514/1.60787
    [8] MIR F, TIAUW H G. Performance of sideslip perching maneuver with an adaptive gain control feature[J]. Aerospace Science and Technology, 2018, 78: 648-660. doi: 10.1016/j.ast.2018.05.026
    [9] MIHIR V, SHAWN K, GONZALO G, et al.Fixed wing aircraft perching[C]//AIAA Guidance Navigation and Control Conference.Reston: AIAA, 2017: 14-34.
    [10] MARK M, IAN R, RUSS T.Invariant funnels around trajectories using sum-of-squares programming[C]//The International Federation of Automatic Control, 2014: 9218-9223.
    [11] TEDRAKE R, MANCHESTE I R, TOBENKIN M, et al. LQR trees: Feedback motion planning via sums-of-square verification[J]. International Journal of Robotics Research, 2010, 29(8): 1025-1038. doi: 10.1177/0278364910369189
    [12] PUPPOLO M, REYNOLDS R, JACOB J.Comparison of three aerodynamic model used in simulation of high angle of attack UAV perching maneuver[C]//Proceedings of the AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2006: 1291-1302.
    [13] TAHK M J, HAN S, LEE B Y, et al.Trajectory optimization and control algorithm of longitudinal perch landing assisted by thruster[C]//Proceedings of the IEEE Control Conference.Piscataway: IEEE Press, 2017: 2247-2252.
    [14] 李达. 飞行器栖落机动飞行轨迹优化与控制[D]. 南京: 南京航空航天大学, 2017.

    LI D.Trajectory optimization and control of perching maneuvers for aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [15] KAUSHIK H, MOHAN R, PRAKASH K A. Utilization of wind shear for powering unmanned aerial vehicles in surveillance application: A numerical optimization study[J]. Energy Procedia, 2016, 90: 349-359. doi: 10.1016/j.egypro.2016.11.202
    [16] RAO A V, BENSON D A, DQRBY C, et al. Algorithm 902: GPOPS, a MATLAB software for solving multiple phase optimal control problems using the Gauss pseudospectral method[J]. ACM Transactions on Mathematical Software, 2010, 37(2): 163-172. http://dl.acm.org/citation.cfm?id=1731032
    [17] BARAK B, KENLNER J, STEURER D.Dictionary learning and tensor decomposition via the sum-of-squares method[C]//Forty-Seventh ACM Symposium on Theory of Computing, 2015: 143-151.
    [18] ZHOU Y, KUANG C, SUN Y.Nonlinear H-infinity control for spacecraft attitude maneuver based on SOS optimization[C]//13th International Conference on Computer Science & Education, 2018: 46-51.
    [19] 隋吉超, 罗飞. 基于平方和规划法的一种估计系统吸引域的改进算法[J]. 科学技术与工程, 2012, 12(5): 978-980. doi: 10.3969/j.issn.1671-1815.2012.05.002

    SUI J C, LUO F. An improved algorithm for estimating the domain of attraction of a system based on the square sum programming[J]. Science Technology and Engineering, 2012, 12(5): 978-980(in Chinese). doi: 10.3969/j.issn.1671-1815.2012.05.002
    [20] RADIAN F, YINGJEN C, MOTOYASU T. An SOS based control Lyapunov function design for polynomial fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(4): 775-787. doi: 10.1109/TFUZZ.2016.2578339
    [21] 李瑞莲. 一类非线性切换系统的吸引域估计及控制器设计[D]. 沈阳: 东北大学, 2009.

    LI R L.Domain of attraction estimation and control for a class of nonlinear switched systems[D].Shenyang: Northeastern University, 2009(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  52
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 录用日期:  2020-07-24
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答