北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (9): 1918-1926.doi: 10.13700/j.bh.1001-5965.2020.0268

• 论文 • 上一篇    下一篇

一种基于卷积神经网络的地磁基准图构建方法

马啸宇, 张金生, 李婷   

  1. 火箭军工程大学 导弹工程学院, 西安 710025
  • 收稿日期:2020-06-16 发布日期:2021-10-09
  • 通讯作者: 张金生 E-mail:15309217656@163.com
  • 基金资助:
    国家自然科学基金(61673017);中国博士后科学基金(2019M3643)

A geomagnetic reference map construction method based on convolutional neural network

MA Xiaoyu, ZHANG Jinsheng, LI Ting   

  1. Missile Engineering College, Rocket Force University, Xi'an 710025, China
  • Received:2020-06-16 Published:2021-10-09
  • Supported by:
    National Natural Science Foundation of China (61673017); China Postdoctoral Science Foundation (2019M3643)

摘要: 地磁匹配导航技术是一种重要的辅助导航制导方法,地磁基准图的构建精度对地磁匹配制导的精准度起着决定性作用。针对现有地磁基准图构建精度难以满足实际地磁匹配导航需求的问题,提出了一种基于卷积神经网络的地磁基准图构建方法。首先,利用卷积层提取低分辨率基准图中的特征图像块;然后,利用基于学习的阈值收缩算法(LISTA)实现图像块的稀疏表示;最后,利用三通道的地磁信息得到重建后的高分辨率基准图。实验结果表明:所提方法对地磁基准图具有更高的构建精度,同时对噪声有更好的鲁棒性,各种客观评价指标均高于现有的超分辨率重建方法。

关键词: 地磁导航, 地磁基准图, 图像超分辨率重建, 卷积神经网络, 稀疏编码

Abstract: Geomagnetic matching navigation technology is an important auxiliary navigation guidance method. The construction accuracy of geomagnetic reference map plays a decisive role in the accuracy of geomagnetic matching guidance. Aimed at the problem that the construction accuracy of the existing geomagnetic reference maps is difficult to meet the actual requirements of geomagnetic matching navigation, a construction method of geomagnetic reference maps based on convolutional neural network is proposed. First, the convolutional layer is used to extract the feature image patches in the low-resolution reference image. Then, the Learned Iterative Shrinkage and Thresholding Algorithm (LISTA) is used to realize the sparse representation of the low-resolution image patches. Finally, the three-channel geomagnetic information is used to obtain the final reconstructed high-resolution reference map. The experimental results show that the proposed method has a higher construction accuracy for geomagnetic reference map and better robustness to noise. Various objective evaluation indexes of the proposed method are higher than those of the existing super-resolution reconstruction algorithms.

Key words: geomagnetic navigation, geomagnetic reference map, image super-resolution reconstruction, convolutional neural network, sparse coding

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发