留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型自抗扰四旋翼无人机控制系统设计与实现

石嘉 裴忠才 唐志勇 胡达达

石嘉, 裴忠才, 唐志勇, 等 . 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报, 2021, 47(9): 1823-1831. doi: 10.13700/j.bh.1001-5965.2020.0333
引用本文: 石嘉, 裴忠才, 唐志勇, 等 . 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报, 2021, 47(9): 1823-1831. doi: 10.13700/j.bh.1001-5965.2020.0333
SHI Jia, PEI Zhongcai, TANG Zhiyong, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1823-1831. doi: 10.13700/j.bh.1001-5965.2020.0333(in Chinese)
Citation: SHI Jia, PEI Zhongcai, TANG Zhiyong, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1823-1831. doi: 10.13700/j.bh.1001-5965.2020.0333(in Chinese)

改进型自抗扰四旋翼无人机控制系统设计与实现

doi: 10.13700/j.bh.1001-5965.2020.0333
详细信息
    通讯作者:

    唐志勇, E-mail: zyt_76@buaa.edu.cn

  • 中图分类号: V249.1

Design and realization of an improved active disturbance rejection quadrotor UAV control system

More Information
  • 摘要:

    针对提高四旋翼无人机姿态控制抗干扰能力的目标,设计了一种内外环嵌套结构的改进型自抗扰控制(ADRC)器。根据所搭建四旋翼无人机的实际参数,构建了四旋翼无人机姿态控制系统的数值仿真模型。通过与传统双闭环PID控制器进行对比,证明所设计的自抗扰控制系统在快速响应、无超调的前提下,具有很强的抗干扰能力以及较高的控制效率。将所设计的控制系统,应用于四旋翼无人机之上,在具有大偏载以及方向不确定的强干扰的飞行试验中,取得了良好的控制效果。

     

  • 图 1  机体坐标系

    Figure 1.  Fuselage coordinate system

    图 2  大地坐标系

    Figure 2.  Ground coordinate system

    图 3  控制系统框图

    Figure 3.  Block diagram of control system

    图 4  滚转通道无干扰时的阶跃响应对比

    Figure 4.  Comparison of step response of roll angle path under no disturbance

    图 5  滚转通道正弦波干扰下的响应对比

    Figure 5.  Comparison of response of roll angle path under sine wave disturbance

    图 6  滚转通道方波干扰下的响应对比

    Figure 6.  Comparison of response of roll angle path under square wave disturbance

    图 7  滚转通道极限幅值方波干扰下的响应对比

    Figure 7.  Comparison of response of roll angle path under square wave disturbance of maximum amplitude

    图 8  偏航通道无干扰时的阶跃响应对比

    Figure 8.  Comparison of step response of yaw angle path under no disturbance

    图 9  偏航通道正弦波干扰下的响应对比

    Figure 9.  Comparison of response of yaw angle path under sine wave disturbance

    图 10  偏航通道方波干扰下的响应对比

    Figure 10.  Comparison of response of yaw angle path under square wave disturbance

    图 11  偏航通道极限幅值方波干扰下的响应对比

    Figure 11.  Comparison of response of yaw angle path under square wave disturbance of maximum amplitude

    图 12  强干扰作用下的姿态控制飞行试验

    Figure 12.  Attitude control flight test under strong disturbance

    图 13  滚转角跟踪效果

    Figure 13.  Tracking performance of roll angle

    图 14  偏航角跟踪效果

    Figure 14.  Tracking performance of yaw angle

    表  1  四旋翼无人机模型参数

    Table  1.   Parameters of quadrotor UAV model

    参数 数值
    总质量m/kg 1.311
    臂长d/m 0.24
    沿x轴转动惯量Ix/(kg·m2) 1.762×10-2
    沿y轴转动惯量Iy/(kg·m2) 1.796×10-2
    沿y轴转动惯量Iz/(kg·m2) 2.805×10-2
    升力系数CT/(N·s2·rad-2) 9.138×10-6
    反扭矩系数CM/(N·m·s2·rad-2) 1.368×10-7
    电机时间常数Tm/s 0.015 7
    下载: 导出CSV

    表  2  滚转角/俯仰角控制器参数

    Table  2.   Parameters of roll/pitch angle controller

    参数 数值
    α 0.5
    δtd 0.2
    k0 8
    h 0.001
    r0 600
    h0 0.004
    b0 58.37
    k1 0.5
    k2 0.05
    δeso 0.005
    β1 1 000
    β2 60 000
    下载: 导出CSV

    表  3  偏航角控制器参数

    Table  3.   Parameters of yaw angle controller

    参数 数值
    α 0.5
    δtd 0.2
    k0 3
    h 0.001
    r0 600
    h0 0.002
    b0 3.6
    k1 5
    k2 0.35
    δeso 0.005
    β1 1 000
    β2 60 000
    下载: 导出CSV
  • [1] 陈志明, 牛康, 李磊, 等. 基于BSP-ANN的四旋翼无人机轨迹跟踪方法[J]. 航空学报, 2018, 39(6): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806017.htm

    CHEN Z M, NIU K, LI L, et al. Trajectory tracking method for quadrotor UAV based on BSP-ANN[J]. Acta Aeronautica et Astronautica Sinica, 2017, 39(6): 177-184(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806017.htm
    [2] 吕品, 赖际舟, 杨天雨, 等. 基于气动模型辅助的四旋翼飞行器室内自主导航方法[J]. 航空学报, 2015, 36(4): 1275-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504028.htm

    LYU P, LAI J Z, YANG T Y, et al. Autonomous navigation me-thod aided by aerodynamics model for an indoor quadrotor[J]. Acta Aeronautics et Astronautica Sinica, 2015, 36(4): 1275-1284(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504028.htm
    [3] 郑东琦, 王培臻, 尹昱昊, 等. 农业植保四旋翼飞行器的模糊PID控制[J]. 中国科技信息, 2018(21): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201821012.htm

    ZHENG D Q, WANG P Z, YIN Y H, et al. Fuzzy PID control of agricultural plant protection quadrotor[J]. China Science and Technology Information, 2018(21): 29-31(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201821012.htm
    [4] DJAMEL K, ABDELLAH M, BENALLEGUE A. Attitude opt-imal backstepping controller-based quaternion for a UAV[J]. Mathematical Problems in Engineering, 2016(4): 1-11. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4393457c47307d4554e0701fd43a6ea3
    [5] 李家豪. 自抗扰控制的改进及其在四旋翼无人机上的应用[D]. 厦门: 厦门大学, 2018: 8-22.

    LI J H. Improvement of ADRC with applications to quadrotor UAVs[D]. Xiamen: Xiamen University, 2018: 8-22(in Chinese).
    [6] 朱超, 张红欣, 陈磊. 基于ANFIS_PID的四旋翼姿态控制系统设计与仿真[J]. 机床与液压, 2019, 47(11): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201911040.htm

    ZHU C, ZHANG H X, CHEN L. Design and simulation of quadrotor attitude control system based on ANFIS-PID[J]. Machine Tool & Hydraulics, 2019, 47(11): 163-167(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201911040.htm
    [7] 高洁. 四旋翼无人机模糊PID控制算法研究和电路设计[D]. 哈尔滨: 哈尔滨工业大学, 2017: 19-46.

    GAO J. Research on fuzzy PID control algorithm of quadrotor and circuit design[D]. Harbin: Harbin Institute of Technology, 2017: 19-46(in Chinese).
    [8] 付岩果. 四旋翼无人机模糊PID姿态控制研究[D]. 舟山: 浙江海洋大学, 2019: 27-36.

    FU Y G. Research on fuzzy PID attitude control of quadrotor UAV[D]. Zhoushan: Zhejiang Ocean University, 2019: 27-36(in Chinese).
    [9] 宿敬亚, 樊鹏辉, 蔡开元. 四旋翼飞行器的非线性PID姿态控制[J]. 北京航空航天大学学报, 2011, 37(9): 1054-1058. https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml

    SU J Y, FAN P H, CAI K Y. Attitude control of quadrotor air-craft via nonlinear PID[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1054-1058(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml
    [10] 蒋林, 冷雪峰, 罗小华, 等. 基于模糊单神经元PID的四旋翼控制研究[J]. 计算机仿真, 2019, 36(10): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201910009.htm

    JIANG L, LENG X F, LUO X H, et al. Quadrotor control based on fuzzy-single neuron PID controller[J]. Computer Simulation, 2019, 36(10): 39-43(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201910009.htm
    [11] 余后明, 刘彦臣, 郑士振, 等. 基于改进型BP神经网络的四旋翼控制系统[J]. 甘肃科学学报, 2019, 31(2): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201902015.htm

    YU H M, LIU Y C, ZHENG S Z, et al. Four-rotor control sys-tem based on improved BP neural network[J]. Journal of Gansu Sciences, 2019, 31(2): 87-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201902015.htm
    [12] 张莹, 刘子龙. 基于RBF神经网络的X型四旋翼飞行器优化控制[J]. 软件导刊, 2019, 18(12): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK201912012.htm

    ZHANG Y, LIU Z L. X-type quadrotor aircraft control based on RBF neural network PID[J]. Software Guide, 2019, 18(12): 51-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK201912012.htm
    [13] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 243-288.

    HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 243-288(in Chinese).
    [14] 吕家启. 四旋翼无人机抗风控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1-16.

    LV J Q. Research on wind resistance control technology of quadrotor unmanned aerial vehicle[D]. Harbin: Harbin Institute of Technology, 2019: 1-16(in Chinese).
    [15] YANG H J, CHENG L, XIA Y Q, et al. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1400-1405. http://www.onacademic.com/detail/journal_1000039936782510_520e.html
    [16] 张勇, 陈增强, 张兴会, 等. 四旋翼无人机系统PD-ADRC串级控制[J]. 系统工程与电子技术, 2018, 40(9): 2055-2061. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809023.htm

    ZHANG Y, CHEN Z Q, ZHANG X H, et al. PD-ADRC cascade control for quadrotor system[J]. Systems Engineering and El-ectronics, 2018, 40(9): 2055-2061(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809023.htm
    [17] 闫桂林, 李彦. 基于改进自抗扰的四旋翼飞行器姿态控制[J]. 电子测量技术, 2019, 42(16): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201916014.htm

    YAN G L, LI Y. Attitude control of quadrotor based on impr-oved auto disturbance rejection[J]. Electronic Measurement Technology, 2019, 42(16): 71-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201916014.htm
    [18] 刘栩粼, 郭玉英. 四旋翼无人机时延模糊自抗扰容错控制[J]. 测控技术, 2020, 39(1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202001010.htm

    LIU X L, GUO Y Y. Fault-tolerant control of quadrotor UAV based on fuzzy active disturbance rejection control and time delay control[J]. Measurement & Control Technology, 2020, 39(1): 55-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202001010.htm
    [19] 章志诚. 基于ADRC的四旋翼飞行器自主避障控制系统研究[D]. 杭州: 浙江大学, 2017.

    ZHANG Z C. Research on autonomous obstacle avoidance of quadrotor system based on ADRC[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
    [20] WONG T L, KHAN R R, LEE D. Model linearization and H controller design for a quadrotor unmanned air vehicle: Simulation study[C]//2013 13th International Conference on Control, Automation, Robotics & Vision. Piscataway: IEEE Press, 2014: 1490-1495.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  197
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-07-31
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答