留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不完美先验信息的随机系数回归模型剩余寿命预测方法

万昌豪 刘志国 唐圣金 孙晓艳 司小胜

万昌豪, 刘志国, 唐圣金, 等 . 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439
引用本文: 万昌豪, 刘志国, 唐圣金, 等 . 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439
WAN Changhao, LIU Zhiguo, TANG Shengjin, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439(in Chinese)
Citation: WAN Changhao, LIU Zhiguo, TANG Shengjin, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439(in Chinese)

基于不完美先验信息的随机系数回归模型剩余寿命预测方法

doi: 10.13700/j.bh.1001-5965.2020.0439
基金项目: 

国家自然科学基金 61703410

国家自然科学基金 61922089

国家自然科学基金 61573366

国家自然科学基金 61573076

国家自然科学基金 61773386

国家自然科学基金 61873273

国家自然科学基金 61873175

陕西省自然科学基础研究计划 2017JQ6015

北京市自然科学基金重点项目B级 KZ201710028028

详细信息
    通讯作者:

    唐圣金, E-mail: tangshengjin27@126.com

  • 中图分类号: TB114.3

Remaining useful life prediction method based on random coefficient regression model with imperfect prior information

Funds: 

National Natural Science Foundation of China 61703410

National Natural Science Foundation of China 61922089

National Natural Science Foundation of China 61573366

National Natural Science Foundation of China 61573076

National Natural Science Foundation of China 61773386

National Natural Science Foundation of China 61873273

National Natural Science Foundation of China 61873175

Basic Research Plan of Shaanxi Natural Science Foundation of China 2017JQ6015

Key Project at B Class of Beijing Natural Science Foundation of China KZ201710028028

More Information
  • 摘要:

    剩余寿命预测是设备预测与健康管理的核心问题,准确的剩余寿命预测可以在故障发生前进行有效的维护保养,以减小设备故障发生的概率。针对实际剩余寿命预测中先验信息不足或缺乏的问题,提出一种克服不完美先验信息影响的启发式剩余寿命预测方法。首先,利用非线性随机系数回归模型进行退化建模。其次,证明了基于单个设备现场退化数据,期望最大化(EM)算法的参数估计结果收敛于极大似然估计(MLE)算法的参数估计结果,并提出一种合理融合先验信息和现场信息的启发式剩余寿命预测方法。最后,通过数值仿真数据和实际锂电池退化数据对提出的结论和方法进行了验证,结果表明:启发式剩余寿命预测方法相比传统贝叶斯方法能够较好地克服不完美先验信息的影响,更为准确的预测设备地实际剩余寿命。

     

  • 图 1  非线性仿真退化数据

    Figure 1.  Simulated nonlinear degradation data

    图 2  非线性EM算法参数估计结果

    Figure 2.  Estimated parameters by nonlinear EM algorithm

    图 3  非线性系数不参与迭代时EM算法参数估计结果

    Figure 3.  Estimated parameters by EM algorithm without updating nonlinear coefficient

    图 4  基于周期的锂电池容量退化数据

    Figure 4.  Cycle-based lithium battery capacity degradation data

    图 5  剔除缓和效应后的锂电池退化数据

    Figure 5.  Lithium battery degradation data after elimination of regeneration effect of

    图 6  基于随机先验信息的应剩余寿命预测

    Figure 6.  Prediction of remaining useful life based on random prior information

    图 7  基于随机先验信息的均方误差

    Figure 7.  Mean square error based on random prior information

  • [1] PENG R, MA X, ZHAI Q, et al. Software reliability growth model considering first-step and second-step fault dependency[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(4): 477-479. doi: 10.1007/s12204-019-2097-z
    [2] 孙博, 康锐, 谢劲松. 故障预测与健康管理系统研究和应用现状综述[J]. 系统工程与电子技术, 2007, 29(10): 1762-1767. doi: 10.3321/j.issn:1001-506x.2007.10.042

    SUN B, KANG R, XIE J S. Research and application of the prognostic and health management system[J]. Systems Engineering and Electronics, 2007, 29(10): 1762-1767(in Chinese). doi: 10.3321/j.issn:1001-506x.2007.10.042
    [3] PANG Z, HU C, SI X, et al. Nonlinear step-stress accelerated degradation modeling and remaining useful life estimation considering multiple sources of variability[J]. IEEE Access, 2019, 7: 124558-124575. doi: 10.1109/ACCESS.2019.2933854
    [4] 雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm

    LEI Y G, HAN T Y, WANG B, et al. XJTU-SY rolling element bearing accelerated life test datasets: A tutorial [J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm
    [5] 蔡忠义, 王泽洲, 张晓丰, 等. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42(6): 1410-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202006028.htm

    CAI Z Y, WANG Z Z, ZHANG X F, et al. Online prediction method of remaining useful lifetime for implicit nonlinear degradation equipment[J]. Systems Engineering and Electronics, 2020, 42(6): 1410-1416(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202006028.htm
    [6] SI X S, WANG W, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237. doi: 10.1016/j.ymssp.2012.08.016
    [7] WANG D, KONG J Z, ZHAO Y, et al. Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena[J]. Measurement, 2019, 147: 106836. doi: 10.1016/j.measurement.2019.07.064
    [8] SI X S. Remaining useful life estimation: A review on the statistical data driven approaches [J]. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018
    [9] WANG D, YANG F, TSUI K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282-1291. doi: 10.1109/TIM.2016.2534258
    [10] FANG X, ZHOU R, GEBRAEEL N. An adaptive functional regression-based prognostic model for applications with missing data [J]. Reliability Engineering and System Safety, 2015, 133: 266-274. doi: 10.1016/j.ress.2014.08.013
    [11] JIANG R. An adaptive power-law degradation model for modelling wear processes[J]. Engineering Asset Management, 2016, 2018: 99-112.
    [12] ZHANG Z, SI X, HU C, et al. Degradation data analysis and remaining useful life estimation: A review on wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796. doi: 10.1016/j.ejor.2018.02.033
    [13] 蔡忠义, 陈云翔, 张诤敏, 等. 非线性步进加速退化数据的可靠性评估方法[J]. 北京航空航天大学学报, 2016, 42(3): 576-582. doi: 10.13700/j.bh.1001-5965.2015.0459

    CAI Z Y, CHEN Y X, ZHANG Z M, et al. Reliability assessment method of nonlinear step-stress accelerated degradation data [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 576-582(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0459
    [14] YE Z S. The inverse gaussian process as a degradation model[J]. Technometrics, 2014, 56(3): 302-311. doi: 10.1080/00401706.2013.830074
    [15] LI Q, GAO Z, TANG D, et al. Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones[J]. Chinese Journal of Aeronautics, 2016, 29(3): 662-674. doi: 10.1016/j.cja.2016.04.007
    [16] WANG Z, WANG W, HU C, et al. A real-time prognostic method for the drift errors in the inertial navigation system by a nonlinear random-coefficient regression model[J]. Acta Astronautica, 2014, 103: 45-54. doi: 10.1016/j.actaastro.2014.06.034
    [17] LU C J, MEEKER W Q. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174. doi: 10.1080/00401706.1993.10485038
    [18] PENG C Y, TSHENG T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455. doi: 10.1109/TR.2009.2026784
    [19] PARK J I, BAE S J. Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests[J]. IEEE Transactions on Reliability, 2010, 59(1): 74-90. doi: 10.1109/TR.2010.2040761
    [20] BAE S J, KVAM P H. A nonlinear random-coefficients model for degradation testing[J]. Technometrics, 2004, 46(4): 460-469. doi: 10.1198/004017004000000464
    [21] GEBRAEEL N, ELWANY A, JING P. Residual life predictions in the absence of prior degradation knowledge[J]. IEEE Transactions on Reliability, 2009, 58(1): 106-117. doi: 10.1109/TR.2008.2011659
    [22] TANG S, YU C, WANG X, et al. Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error[J]. Energies, 2014, 7(2): 520-547. doi: 10.3390/en7020520
    [23] WANG L, PAN R, LI X, et al. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information[J]. Reliability Engineering and System Safety, 2013, 112: 38-47. doi: 10.1016/j.ress.2012.09.015
    [24] WANG L, PAN R, WANG X, et al. A Bayesian reliability evaluation method with different types of data from multiple sources[J]. Reliability Engineering and System Safety, 2017, 167: 128-135. doi: 10.1016/j.ress.2017.05.039
    [25] TANG S, XU X, YU C, et al. Remaining useful life prediction with fusing failure time data and field degradation data with random effects[J]. IEEE Access, 2020, 8: 11964-11978. doi: 10.1109/ACCESS.2019.2948263
    [26] WANG W, CARR M, XU W, et al. A model for residual life prediction based on brownian motion with an adaptive drift[J]. Microelectronics Reliability, 2011, 51(2): 285-293. doi: 10.1016/j.microrel.2010.09.013
    [27] SI X S. An adaptive prognostic approach via nonlinear degradation modeling: Application to battery data[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5082-5096. doi: 10.1109/TIE.2015.2393840
    [28] WANG X, HU C, SI X, et al. An adaptive prognostic approach for newly developed system with three-source variability[J]. IEEE Access, 2019, 7: 53091-53102. doi: 10.1109/ACCESS.2019.2911307
    [29] WANG X, HU C, SI X, et al. An adaptive remaining useful life estimation approach for newly developed system based on nonlinear degradation model[J]. IEEE Access, 2019, 7: 82162-82173. doi: 10.1109/ACCESS.2019.2924148
    [30] LI N, LEI Y, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. doi: 10.1109/TIE.2015.2455055
    [31] WANG H, MA X, ZHAO Y. A mixed-effects model of two-phase degradation process for reliability assessment and RUL prediction[J]. Microelectronics Reliability, 2020, 107: 113622. doi: 10.1016/j.microrel.2020.113622
    [32] WANG D, TSUI K L. Two novel mixed effects models for prognostics of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2018, 99: 1-13. doi: 10.1016/j.ymssp.2017.06.004
    [33] ZHAI Q, YE Z S. Degradation in common dynamic environments[J]. Technometrics, 2018, 60(4): 461-471. doi: 10.1080/00401706.2017.1375994
    [34] JIN G, MATTHEWS D E, ZHOU Z. A Bayesian framework for online degradation assessment and residual life prediction of secondary batteries inspacecraft[J]. Reliability Engineering and System Safety, 2013, 113: 7-20. doi: 10.1016/j.ress.2012.12.011
  • 加载中
图(7)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  51
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 录用日期:  2020-10-09
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答