留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高含量卡托辛合成的理论与实验研究

刘晓菊 索奇 冯海涛 张驰 马晓燕

刘晓菊, 索奇, 冯海涛, 等 . 高含量卡托辛合成的理论与实验研究[J]. 北京航空航天大学学报, 2021, 47(12): 2514-2520. doi: 10.13700/j.bh.1001-5965.2020.0497
引用本文: 刘晓菊, 索奇, 冯海涛, 等 . 高含量卡托辛合成的理论与实验研究[J]. 北京航空航天大学学报, 2021, 47(12): 2514-2520. doi: 10.13700/j.bh.1001-5965.2020.0497
LIU Xiaoju, SUO Qi, FENG Haitao, et al. Theoretical and experimental study on synthesis of high-content catocene[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2514-2520. doi: 10.13700/j.bh.1001-5965.2020.0497(in Chinese)
Citation: LIU Xiaoju, SUO Qi, FENG Haitao, et al. Theoretical and experimental study on synthesis of high-content catocene[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2514-2520. doi: 10.13700/j.bh.1001-5965.2020.0497(in Chinese)

高含量卡托辛合成的理论与实验研究

doi: 10.13700/j.bh.1001-5965.2020.0497
详细信息
    通讯作者:

    马晓燕, E-mail: m_xiao_yana@nwpu.edu.cn

  • 中图分类号: V259

Theoretical and experimental study on synthesis of high-content catocene

More Information
  • 摘要:

    2,2'-双(乙基二茂铁)丙烷(卡托辛)是一种综合性能优良的高效液体燃速催化剂,主要包含4种乙基取代位置不同、物理和化学性质均很相近的卡托辛同分异构体和不同取代基的双二茂铁丙烷,其中卡托辛同分异构体与其他双二茂铁丙烷很难分离。首先,采用密度泛函理论(DFT)方法模拟确定了4种同分异构体的结构,分别获得4种同分异构体的1H-NMR和13C-NMR理论谱图。其次,计算研究了合成过程中温度对产物中4种同分异构体含量的影响。最后,在理论合成条件的指导下,以高纯度乙基二茂铁和丙酮为原料、浓硫酸为催化剂,合成了卡托辛粗品。结果表明:利用惰性气体辅助蒸汽蒸馏法得到纯度大于99.0%的卡托辛同分异构体,收率高于94.0%,并通过核磁共振法确定了其结构。

     

  • 图 1  卡托辛合成工艺流程

    Figure 1.  Catocene synthesis process

    图 2  惰性气体辅助的蒸汽蒸馏装置

    Figure 2.  An inert gas assisted steam distillation device

    图 3  四种同分异构体的几何结构

    Figure 3.  Geometry of four isomers

    图 4  同分异构体的13C-NMR (模拟结果)

    Figure 4.  13C-NMR spectrum of isomers(simulation result)

    图 5  同分异构体的1H-NMR (模拟结果)

    Figure 5.  1H-NMR spectrum of isomers (simulation result)

    图 6  卡托辛的1H-NMR (实验结果)

    Figure 6.  1H-NMR spectrum of catocene (experimental result)

    图 7  卡托辛的13C-NMR (实验结果)

    Figure 7.  13C-NMR spectrum of catocene (experimental result)

    图 8  温度对同分异构体分布的影响(理论模拟)

    Figure 8.  Effect of temperature on distribution of isomers(theoretical simulation)

    图 9  温度对同分异构体分布的影响(实验研究)

    Figure 9.  Effect of temperature on distribution of isomers(experimental study)

    图 10  卡托辛同分异构体纯度随蒸馏时间变化的GC图

    Figure 10.  GC graph of the purity of catocene isomers change with distillation time

    表  1  蒸馏溶剂配比对产品的影响

    Table  1.   Influence of the ratio of solvent on distillation effect of product

    水-乙醇体积比 收率/% 卡托辛同分异构体相对含量/%
    95∶5 82 97.2
    93∶7 89 99.0
    92∶8 95 99.4
    90∶12 82 99.2
    88∶14 71 99.3
    下载: 导出CSV

    表  2  温度对卡托辛同分异构体蒸馏效果的影响

    Table  2.   Influence of temperatures on distillation effect of catocene isomers

    蒸馏瓶温度/℃ 蒸汽发生器温度/℃ 卡托辛同分异构体相对含量/% 收率/%
    120 190 97.35 96
    125 190 98.83 96
    130 190 99.22 95
    135 190 99.26 90
    140 190 98.74 81
    130 170 98.81 93
    130 180 99.01 92
    130 200 99.12 87
    下载: 导出CSV
  • [1] USMAN M, WANG L, YU H, et al. Recent progress on ferrocene-based burning rate catalysts for propellant applications [J]. Journal of Organometallic Chemistry, 2018, 872: 40-53. doi: 10.1016/j.jorganchem.2018.07.015
    [2] ZAIN-UL-ABDIN, WANG L, YU H, et al. Tris (2-aminoethyl) amine-based ferrocene-terminated dendrimers as burning rate catalysts for ammonium perchlorate-based propellant decomposition[J]. Applied Organometallic Chemistry, 2018, 32(4): 264-270. doi: 10.1002/aoc.4268
    [3] KAI F G, HANSEN F K. Diffusion rates and the role of diffusion in solid propellant rocket moto radhesion[J]. Journal of Applied Polymer Science, 2010, 103(3): 1529-1538. http://www.onacademic.com/detail/journal_1000033761356710_f383.html
    [4] ZHAO H, JIN Z, SU H, et al. Targeted synthesis of a 2D ordered porous organic framework for drug release[J]. Chemical Communications, 2011, 47(22): 6389-6391. doi: 10.1039/c1cc00084e
    [5] STERESCU D M, STAMATIALIS D F, MENDES E, et al. Boltorn-modified poly (2, 6-dimethyl-1, 4-phenylene oxide) gas separation membranes[J]. Macromolecules, 2007, 40(15): 5400-5410. doi: 10.1021/ma070772g
    [6] GULDI D M, LUO C P, SWARTZ A, et al. π-conjugated electroactive oligomers: Energy and electron transducing systems[J]. Journal of Physical Chemistry, 2004, 108(3): 455-467. doi: 10.1021/jp034186a
    [7] JIANG J X, TREWIN A, ADAMS D J, et al. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chemical Science, 2011, 2(9): 1777-1781. doi: 10.1039/c1sc00329a
    [8] LI S C, ZHENG Y, GAO F, et al. Experimental and computational interrogation of fast SCR mechanism and active sites on H-Form SSZ-13[J]. ACS Catalysis, 2017, 7(8): 5087-5096. doi: 10.1021/acscatal.7b01319
    [9] KHAMRANG T, VELUSAMY M, MADHAVAN J, et al. A combined experimental and computational investigations on pyrene based D-π-A dyes[J]. Physical Chemistry Chemical Physics, 2018, 20(9): 6264-6273. doi: 10.1039/C7CP08038G
    [10] HIROTO T, KAZUKO H, SADAYUKI W, et al. Local structures and electronic states of C-S-H-Sodium-H2O interface: NMR and DFT studies[J]. Journal of Physical Chemistry, 2020, 124(10): 5672-5680. doi: 10.1021/acs.jpcc.9b11302
    [11] MALENOV D P, NINKOVIC D B, ZARIC S D. Stacking of metal chelates with benzene: Can dispersion-corrected DFT be used to calculate organic-inorganic stacking [J]. Chemphyschem, 2015, 16(4): 761-768. doi: 10.1002/cphc.201402589
    [12] ZHOU W J, LIU J B, STEVEN D, et al. Molecular dynamics simulations, reaction pathway and mechanism dissection, and kinetics modeling of the nitric acid oxidation of dicyanamide and dicyanoborohydride anions[J]. Journal of Physical Chemistry, 2020, 124(49): 11175-11188. doi: 10.1021/acs.jpcb.0c07823
    [13] YANG Z, SEBASTIAN T. Binuclear Pd(Ⅰ)-Pd(Ⅰ) catalysis assisted by iodide ligands for selective hydroformylation of alkenes and alkynes[J]. Journal of the American Chemical Society, 2020, 142(42): 18251-18265. doi: 10.1021/jacs.0c09254
    [14] SABER M, MAXIM V I, QADIR K T. Improving performance of the SMD solvation model: Bondi radii improve predicted aqueous solvation free energies of ions and pKa values of thiols[J]. Journal of Physical Chemistry, 2019, 123(44): 9498-9504. doi: 10.1021/acs.jpca.9b02340
    [15] RAO Z Z, MASAYOSHI T, MASATAKA N. Ab initio quantitative prediction of tacticity in radical polymerization of poly(methyl methacrylate) by a molecular simulation technique with the conformation indexing for multiple transition states[J]. Journal of Physical Chemistry, 2020, 124(31): 16895-16901. doi: 10.1021/acs.jpcc.0c01812
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  71
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 录用日期:  2020-12-14
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答