留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抽象汇编指令的恶意软件家族分类方法

李玉 罗森林 郝靖伟 潘丽敏

李玉, 罗森林, 郝靖伟, 等 . 基于抽象汇编指令的恶意软件家族分类方法[J]. 北京航空航天大学学报, 2022, 48(2): 348-355. doi: 10.13700/j.bh.1001-5965.2020.0568
引用本文: 李玉, 罗森林, 郝靖伟, 等 . 基于抽象汇编指令的恶意软件家族分类方法[J]. 北京航空航天大学学报, 2022, 48(2): 348-355. doi: 10.13700/j.bh.1001-5965.2020.0568
LI Yu, LUO Senlin, HAO Jingwei, et al. Malware family classification method based on abstract assembly instructions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 348-355. doi: 10.13700/j.bh.1001-5965.2020.0568(in Chinese)
Citation: LI Yu, LUO Senlin, HAO Jingwei, et al. Malware family classification method based on abstract assembly instructions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 348-355. doi: 10.13700/j.bh.1001-5965.2020.0568(in Chinese)

基于抽象汇编指令的恶意软件家族分类方法

doi: 10.13700/j.bh.1001-5965.2020.0568
基金项目: 

工信部2020年信息安全软件项目 CEIEC-2020-ZM02-0134

详细信息
    通讯作者:

    潘丽敏, E-mail: panlimin2016@gmail.com

  • 中图分类号: TP309.5

Malware family classification method based on abstract assembly instructions

Funds: 

2020 Information Security Software Project of the Ministry of Industry and Information Technology CEIEC-2020-ZM02-0134

More Information
  • 摘要:

    恶意软件变体的大量出现对网络安全造成巨大威胁。针对基于汇编指令的恶意软件家族分类方法中,操作数语义与运行环境密切相关而难以提取,导致指令语义缺失,难以正确分类恶意软件变体的问题。提出了一种基于抽象汇编指令的恶意软件家族分类方法。通过抽象出操作数类型重构指令,使操作数语义脱离运行环境的约束;利用词注意力机制与双向门循环单元(Bi-GRU)构建指令嵌入网络以捕获指令行为语义,并结合双向循环神经网络(Bi-RNN)学习恶意软件家族共性指令序列,以减小变体技术对指令序列的干扰;融合原始指令和家族共性指令序列构建特征图像,并通过卷积神经网络实现恶意软件家族分类。公开数据集上的实验结果表明:所提方法能够有效提取操作数信息,抵抗恶意软件变体中无关指令的干扰,实现恶意软件变体的家族分类。

     

  • 图 1  MCAI原理框图

    Figure 1.  Functional block diagram of MCAI

    图 2  操作数类型抽象

    Figure 2.  Operand type abstracting

    图 3  指令嵌入网络

    Figure 3.  Instruction embedding network

    图 4  家族共性指令序列学习

    Figure 4.  Family common instruction sequence learning

    图 5  家族共性指令序列预测

    Figure 5.  Family common instruction sequence prediction

    图 6  对比实验流程

    Figure 6.  Flowchart of comparative experiments

    图 7  对比实验精确率

    Figure 7.  Precision of comparison experiment

    图 8  对比实验F1

    Figure 8.  F1-score of comparison experiment

    图 9  对比实验召回率

    Figure 9.  Recall of comparison experiment

    表  1  数据集家族标签及样本数量

    Table  1.   Family label and number of the sample in the dataset

    序号 家族名称 样本数量
    1 Ramnit 1 541
    2 Lollipop 2 478
    3 Kelihos_ver3 2 942
    4 Vundo 475
    5 Simda 42
    6 Tracur 751
    7 Kelihos_ver1 398
    8 Obfuscator.ACY 1 228
    9 Gatak 1 013
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Results of ablation experiments  %

    方法 准确率 召回率 精确率 F1
    1 91.49 88.87 87.81 88.32
    2 80.99 71.53 69.53 70.28
    3 92.49 88.04 87.27 87.57
    4 96.04 91.13 96.28 93.01
    5 98.51 98.36 97.07 97.66
    下载: 导出CSV

    表  3  对比实验结果

    Table  3.   Comparative experimental results  %

    方法 准确率 召回率 精确率 F1
    MCSC 91.4 88.87 87.81 88.32
    RMVC 94.20 95.92 89.07 91.00
    MCAI 98.51 98.36 97.07 97.66
    下载: 导出CSV
  • [1] YE Y F, LI T, ADJEROH D, et al. A survey on malware detection using data mining techniques[J]. ACM Computing Surveys, 2017, 50(3): 1-40.
    [2] YE Y F, LI T, ZHU S H, et al. Combining file content and file relations for cloud based malware detection[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2011: 222-230.
    [3] TAMERSOY A, ROUNDY K, CHAU D H. Guilt by association: Large scale malware detection by mining file-relation graphs[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 1524-1533.
    [4] DING Y X, XIA X L, CHEN S, et al. A malware detection method based on family behavior graph[J]. Computers & Security, 2018, 73: 73-86.
    [5] HARDY W, CHEN L, HOU S, et al. D14md: A deep learning framework for intelligent malware detection[C]//Proceedings of the International Conference on Data Mining(DMIN). New York: CSREA, 2016: 61.
    [6] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: Visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7.
    [7] CUI Z H, XUE F, CAI X J, et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3187-3196. doi: 10.1109/TII.2018.2822680
    [8] TRINIUS P, HOLZ T, GÖBEL J, et al. Visual analysis of malware behavior using treemaps and thread graphs[C]//20096th International Workshop on Visualization for Cyber Security. Piscataway: IEEE Press, 2009: 33-38.
    [9] ZHANG J X, QIN Z, YIN H, et al. IRMD: Malware variant detection using opcode image recognition[C]//2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS). Piscataway: IEEE Press, 2016: 1175-1180.
    [10] NI S, QIAN Q, ZHANG R. Malware identification using visualization images and deep learning[J]. Computers & Security, 2018, 77: 871-885.
    [11] SUN G S, QIAN Q. Deep learning and visualization for identifying malware families[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(1): 283-295. doi: 10.1109/TDSC.2018.2884928
    [12] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of ICLR Workshops Track. Cambridge: MIT Press, 2013: 21-29.
    [13] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[C]//Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014: 103-111.
    [14] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 33-38.
    [15] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. doi: 10.1109/78.650093
    [16] Microsoft. Microsoft malware classification challenge (Big 2015)[EB/OL]. (2019-06-11)[2020-09-01]. https://www.kaggle.com/c/malware-classification.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  58
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 录用日期:  2020-11-13
  • 网络出版日期:  2022-02-20

目录

    /

    返回文章
    返回
    常见问答