留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ESO的电液位置伺服系统反步滑模控制

张震阳 汪成文 郭新平 陈帅

张震阳, 汪成文, 郭新平, 等 . 基于ESO的电液位置伺服系统反步滑模控制[J]. 北京航空航天大学学报, 2022, 48(6): 1082-1090. doi: 10.13700/j.bh.1001-5965.2020.0724
引用本文: 张震阳, 汪成文, 郭新平, 等 . 基于ESO的电液位置伺服系统反步滑模控制[J]. 北京航空航天大学学报, 2022, 48(6): 1082-1090. doi: 10.13700/j.bh.1001-5965.2020.0724
ZHANG Zhenyang, WANG Chengwen, GUO Xinping, et al. Backstepping sliding mode control of electro-hydraulic position servo system based on ESO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1082-1090. doi: 10.13700/j.bh.1001-5965.2020.0724(in Chinese)
Citation: ZHANG Zhenyang, WANG Chengwen, GUO Xinping, et al. Backstepping sliding mode control of electro-hydraulic position servo system based on ESO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1082-1090. doi: 10.13700/j.bh.1001-5965.2020.0724(in Chinese)

基于ESO的电液位置伺服系统反步滑模控制

doi: 10.13700/j.bh.1001-5965.2020.0724
基金项目: 

国家重点研发计划 2019YFB2004502

山西省重点研发计划 201903D121069

山西省回国留学人员科研资助项目 HGKY2019016

流体动力与机电系统国家重点实验室开放基金 GZKF-201720

详细信息
    通讯作者:

    汪成文, E-mail: cwwang@yeah.net

  • 中图分类号: V221+.3;TP271

Backstepping sliding mode control of electro-hydraulic position servo system based on ESO

Funds: 

National Key R & D Program of China 2019YFB2004502

Key Research and Development Program of Shanxi Province 201903D121069

Research Project Supported by Shanxi Scholarship Council of China HGKY2019016

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems GZKF-201720

More Information
  • 摘要:

    针对阀控电液位置伺服系统未建模摩擦力、参数不确定性和外部随机干扰造成的复合扰动问题, 提出一种基于扩张状态观测器(ESO)的反步滑模控制方法。ESO的设计可以对作动器速度、加速度和复合扰动进行在线估计, 解决工程应用中对以上信号难以测定的问题;基于ESO估计值和位移反馈信号进行反步滑模控制器设计, 通过构造包含反步设计误差、滑模函数和观测器误差的Lyapunov函数, 对所提控制方法进行稳定性证明;为验证所提方法的有效性, 进行了AMESim和MATLAB/Simulink联合仿真, 与PID控制器、传统的反步滑模控制器和基于ESO的滑模控制器的控制效果进行对比, 并对仿真数据进行了分析。研究结果表明:所提方法可以有效抑制系统复合扰动, 位移跟踪精度高, 鲁棒性强。

     

  • 图 1  电液位置伺服系统结构

    Figure 1.  Structure of electro-hydraulic position servo system

    图 2  基于ESO的反步滑模控制策略框图

    Figure 2.  Block diagram of backstepping sliding mode control strategy based on ESO

    图 3  MATLAB/Simulink和AMESim联合仿真模型

    Figure 3.  Co-simulation model of MATLAB/Simulink and AMESim

    图 4  位移跟踪结果对比

    1—本文控制方法;2—基于ESO的滑模控制;3—位移指令信号;4—PID控制;5—传统反步滑模控制。

    Figure 4.  Comparison of displacement tracking results

    图 5  位移跟踪误差对比

    1—传统反步滑模控制;2—本文控制方法;3—基于ESO的滑模控制;4—PID控制。

    Figure 5.  Comparison of displacement tracking errors

    图 6  控制输出对比

    1—本文控制方法;2—基于ESO的滑模控制;3—PID控制;4—传统反步滑模控制。

    Figure 6.  Comparison of control outputs

    图 7  速度估计结果

    1—速度估计;2—作动器速度。

    Figure 7.  Velocity estimation results

    图 8  加速度估计结果

    1—加速度估计;2—作动器加速度;3—阶跃干扰力。

    Figure 8.  Acceleration estimation results

    图 9  复合扰动估计结果

    1—未加外力复合扰动估计;2—施加外力复合扰动估计;3—正弦干扰力;4—阶跃干扰力。

    Figure 9.  Compound disturbance estimation results

    表  1  AMESim模型中电液位置伺服系统参数

    Table  1.   Parameters of electro-hydraulic position servo system in AMESim model

    参数 数值
    液压缸行程/m ±0.1
    负载质量/kg 50
    库伦摩擦力/N 20
    静摩擦力/N 22
    黏性摩擦系数/(N·(m·s-1)-1) 20
    活塞杆直径/mm 25
    伺服阀额定压降/Pa 7×106
    活塞直径/mm 40
    泵排量/(cm3·r-1) 6.4
    内泄漏系数/(m3·s-1·Pa-1) 1.17×10-13
    油液体积弹性模量/Pa 7×108
    油腔总体积/m3 1.53×10-4
    伺服阀额定电流/mA 40
    伺服阀额定流量/(L·min-1) 38
    下载: 导出CSV

    表  2  性能评价指标对比

    Table  2.   Comparison of performance evaluation indexes

    控制方法 EMAE ERMSE EITAE
    PID控制 1.2×10-3 7.106 8×10-4 22.897 8
    传统反步滑模控制 1.4×10-3 1.5×10-3 28.429 4
    基于ESO的滑模控制 3.299 2×10-4 2.547 6×10-4 6.233 7
    基于ESO的反步滑模控制 6.598 9×10-5 1.349 3×10-4 1.020 2
    下载: 导出CSV
  • [1] LI Y H, HE L Y. Counterbalancing speed control for hydrostatic drive heavy vehicle under long down-slope[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1533-1542. doi: 10.1109/TMECH.2014.2385700
    [2] 董致新, 黄伟男, 葛磊, 等. 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612023.htm

    DONG Z X, HUANG W N, GE L, et al. Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits[J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612023.htm
    [3] WANG C W, JIAO Z X, QUAN L. Nonlinear robust dual-loop control for electro-hydraulic load simulator[J]. ISA Transactions, 2015, 59: 280-289. doi: 10.1016/j.isatra.2015.10.013
    [4] WANG C W, JIAO Z X, WU S, et al. Nonlinear adaptive torque control of electro-hydraulic load system with external active motion disturbance[J]. Mechatronics, 2014, 24(1): 32-40. doi: 10.1016/j.mechatronics.2013.11.005
    [5] PI Y J, WANG X Y. Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances[J]. Control Engineering Practice, 2011, 19(2): 185-193. doi: 10.1016/j.conengprac.2010.11.006
    [6] 付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952. doi: 10.13700/j.bh.1001-5965.2017.0195

    FU Y L, HAN X, YANG R R, et al. Review on design method of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0195
    [7] YAO B, BU F P, JOHN R, et al. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79-91. doi: 10.1109/3516.828592
    [8] 贾鹤鸣, 宋文龙. 基于非线性干扰观测器的L2滤波反步控制[J]. 中南大学学报(自然科学版), 2014, 45(8): 2640-2647. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408015.htm

    JIA H M, SONG W L. L2 filter backstepping control based on nonlinear disturbance observer[J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2640-2647(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408015.htm
    [9] WANG C W, ZHANG Z Y, WANG H, et al. Disturbance observer based output feedback control of hydraulic servo system considering mismatched uncertainties and internal pressure dynamics stability[J]. IET Control Theory and Applications, 2020, 14(8): 1046-1056. doi: 10.1049/iet-cta.2019.0346
    [10] 蒲明, 吴庆宪, 姜长生, 等. 非匹配不确定高阶非线性系统递Terminal滑模控制[J]. 自动化学报, 2012, 38(11): 1777-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201211008.htm

    PU M, WU Q X, JIANG C S, et al. Recursive Terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties[J]. Acta Automatica Sinica, 2012, 38(11): 1777-1793(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201211008.htm
    [11] GUAN C, PAN S X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Engineering Practice, 2008, 16(11): 1275-1284. doi: 10.1016/j.conengprac.2008.02.002
    [12] NA J, REN X M, ZHENG D D. Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(3): 370-382. doi: 10.1109/TNNLS.2012.2225845
    [13] NA J, LI Y P, HUANG Y B, et al. Output feedback control of uncertain hydraulic servo systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 490-500. doi: 10.1109/TIE.2019.2897545
    [14] 石胜利, 李建雄, 方一鸣. 具有输入饱和的电液伺服系统反步位置跟踪控制[J]. 中南大学学报(自然科学版), 2016, 47(10): 3369-3374. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610012.htm

    SHI S L, LI J X, FANG Y M. Backstepping position tracking control for electro-hydraulic servo system with input saturation[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3369-3374(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610012.htm
    [15] LIU J Y. Observer-based backstepping dynamic surface control for stochastic nonlinear strict-feedback systems[J]. Neural Computing & Applications, 2014, 24(5): 1067-1077.
    [16] JI X H, WANG C W, ZHANG Z Y, et al. Nonlinear adaptive position control of hydraulic servo system based on sliding mode back-stepping design method[J]. Proceedings of the Institution of Mechanical Engineers. Part I-Journal of Systems and Control Engineering, 2021, 235(4): 474-485.
    [17] YIN X X, LIN Y G, LI W, et al. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines[J]. ISA Transactions, 2015, 58: 629-634. doi: 10.1016/j.isatra.2015.07.006
    [18] 方一鸣, 焦宗夏, 王文宾, 等. 轧机液压伺服位置系统的自适应反步滑模控制[J]. 电机与控制学报, 2011, 15(10): 95-100. doi: 10.3969/j.issn.1007-449X.2011.10.015

    FANG Y M, JIAO Z X, WANG W B, et al. Adaptive backstepping sliding mode control for hydraulic servo position system of rolling mill[J]. Electric Machines and Control, 2011, 15(10): 95-100(in Chinese). doi: 10.3969/j.issn.1007-449X.2011.10.015
    [19] 吉鑫浩, 汪成文, 陈帅, 等. 阀控电液位置伺服系统滑模反步控制方法[J]. 中南大学学报(自然科学版), 2020, 51(6): 1518-1525. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202006006.htm

    JI X H, WANG C W, CHEN S, et al. Sliding mode backstepping control method for valve-controlled electro-hydraulic position servo system[J]. Journal of Central South University (Science and Technology), 2020, 51(6): 1518-1525(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202006006.htm
    [20] 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1): 85-88. doi: 10.3321/j.issn:1001-0920.1995.01.020

    HAN J Q. Extended state observer for a class of uncertain plants[J]. Control and Decision, 1995, 10(1): 85-88(in Chinese). doi: 10.3321/j.issn:1001-0920.1995.01.020
    [21] HAN J Q, HUANG Y. Analysis and design for the second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 21(3): 1938-1944.
    [22] SHI P, XIA Y Q, LIU G P, et al. On designing of sliding-mode control for stochastic jump systems[J]. IEEE Transactions on Automatic Control, 2006, 51(1): 97-103. doi: 10.1109/TAC.2005.861716
    [23] 郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168. doi: 10.13700/j.bh.1001-5965.2019.0418

    GUO X P, WANG C W, LIU H, et al. Sliding mode control of pump controlled electro-hydraulic servo system based on extended state observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0418
    [24] CHEN H P, JYH C R, JUHNG P S. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J]. International Journal of Advanced Manufacturing Technology, 2005, 26(1-2): 117-123. doi: 10.1007/s00170-004-2145-0
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  79
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-04-23
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答