Bi-point/bi-objective optimization design of ailfoil using N-S equations
-
摘要: 在使用N-S方程和尾迹面积分技术较精确地计算翼型气动阻力的基础上,对翼型进行参数化建模,应用Powell和目标组合方法讨论了翼型的双设计点双目标优化设计,并与单设计点单目标优化和单设计点双目标优化进行了对比.在给定设计条件下,2种翼型:RAE2822和"类全球鹰"翼型的计算结果表明,针对翼型设计状态,合理选择目标优化函数是必要和重要的;所采用的双设计点双目标设计方法可以兼顾多种设计状态,其优化翼型相对原始翼型具有更好的压强分布,有效提高了升力系数和降低了阻力系数;相对单设计点单目标优化和单设计点双目标优化翼型也具有更高的综合气动性能.Abstract: Based on the computation of N-S equations and the technique of wake integration method, the sharp of the airfoil was paramerically modeled, the bi-point(BP)/bi-objective(BO) optimization design of ailfoil was discussed with the comparison of single-point(SP)/single-objective(SO) and single-point(SP)/bi-objective(BO) optimization. Powell method and objective function combination method was integrated. Numerical results of given airfoils(RAE2822 and quasi-global hawk ailfoils) cases show that the BP/BO design method is compatible and effective for multiform design status and it is necessary and important to choose the objective function in the optimization method. The BP/BO optimal ailfoils have better pressure distribution to the original ones, which leads to higher coefficient of lift and lower coefficient of drag, thus results in better integral performance.The BP/BO optimal airfoils also have better integral performance to the SP/SO and the SP/BO ones.
-
Key words:
- bi-point(BP) design /
- bi-objective(BO) optimization /
- airfoil design /
- N-S equations
-
[1] 刘周,朱自强,付鸿雁,等.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410-415 Liu Zhou,Zhu Ziqiang,Fu Hongyan,et al.Design of airfoil with high ratio of lift over drag[J].Acta Aerodynamica Sinica,2004,22(4):410-415(in Chinese) [2] Tinoco E N. An assessment of CFD prediction of drag and other longitudinal characteristics . AIAA 2001-1002,2001 [3] Sobieski J S. Optimization for engineering systems,achievements and potential . NASA TM 101566,1989 [4] Li P, OM D. Design application in the industry IUTAM Symposium Transsonicum Ⅳ. Dordrecht:Kluwer Academic Publishers, 2003:231-238 [5] Van Dam C P. Recent experience with different methods of drag prediction[J]. Progress in Aerospace Sciences, 1999, 35:751-798 [6] Van Dam C P, Nikfetrat K, Wong K, et al. Drag prediction at subsonic and transonic speeds using Euler methods[J]. Journal of Aircraft, 1995,32(4):839-845 [7] 刘杰,朱自强,陈泽民,等.基于欧拉方程的尾迹面法气动力计算[J].航空学报,2005,26(4):417-421 Liu Jie,Zhu Ziqiang,Chen Zemin, et al.Wake integration method for aerodynamics evaluation using Euler equations[J].Acta Aeronautica et Astronautica Sinica,2005,26(4):417-421(in Chinese) [8] Chao D D, Van Dam C P. Airfoil drag prediction and decomposition . AIAA 98-2783,1998 [9] 刘周,朱自强,王晓璐,等.基于N-S方程的尾迹面法翼型气动阻力计算 .北京航空航天大学 报,2006,26(3):288-292 Liu Zhou,Zhu ZIqiang,Wang Xiaolu,et al.Wake integration method for airfoil drag evaluation using N-S equations[J].Journal of Beijing University of Aeronautics and Astronautics,2006,26(3):288-292(in Chinese) [10] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes . AIAA 81-1259,1981 [11] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows . AIAA 78-257,1978 [12] Powell M J D. An efficient method for finding the minimum of a function of several variables without calculation derivatives[J]. Computer Journal, 1964, 7:155-162 [13] Zhu Z Q, Fu H Y, Yu R X, et al. Multi-objective optimization design of airfoil and wing[J]. Science in China(series E), 2004,47(1):15-25 [14] Zhu Z Q, Liu Z, Li H M, et al. Construction of integral objective function/fitness function of multi-objective/multi-disciplinary optimization . Computer Modeling in Engineering & Sciences, 2004,6(6):567-576 [15] Sobieczky H. Parametric airfoils and wings[J]. Note on Numerical Fluid Mechanics,1998,68:71-88
点击查看大图
计量
- 文章访问数: 3304
- HTML全文浏览量: 260
- PDF下载量: 766
- 被引次数: 0