北京航空航天大学学报 ›› 2007, Vol. 33 ›› Issue (11): 1340-1344.

• 论文 • 上一篇    下一篇

装载机载重动态测量的LS-SVM速度补偿方法

王田苗,王伟,魏洪兴,陈殿生   

  1. 北京航空航天大学 机械工程及自动化学院, 北京 100083
  • 收稿日期:2006-10-27 出版日期:2007-11-30 发布日期:2010-09-17
  • 作者简介:王田苗(1960-),男,湖北武汉人,教授,wxw@me.buaa.edu.cn.
  • 基金资助:

    国家863高技术计划资助项目(2003AA430110)

LS-SVM method for dynamic weighing velocity compensation about loaders

Wang Tianmiao,Wang Wei,Wei Hongxing,Chen Diansheng   

  1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2006-10-27 Online:2007-11-30 Published:2010-09-17

摘要: 能否合理补偿动臂举升速度对所测油压信号的影响是制约装载机载重动态测量精度的关键问题.在给出载重测量的实现方法后,建立了实现载重测量速度补偿和载重量计算的框架模型,然后详细阐述了贝叶斯证据框架下最小二乘支持向量机(LSSVM,Least Square Support Vector Machines)参数的推断优化过程,以及基于贝叶斯证据框架下的LSSVM速度补偿方法.试验结果表明,采用该方法进行速度补偿后的载重测量误差均能控制到1%以下,验证了其有效性.

Abstract: Whether or not to compensate the oil pressure because of lift crane velocity reasonably, i.e., the velocity compensation was thought to be the key to obtain accurate dynamic weighing about loaders. After the method of dynamic weighing was given, the parameter inferring course of least square support vector machines (LS-SVM) within Bayesian evidence framework was introduced. Then the frame model of velocity compensation based on LS-SVM was given, and the means of velocity compensation and the course of weight computing were introduced in detail. Test results indicate that using LS-SVM within Bayesian evidence framework for solving velocity compensation, a relative measuring error within 1% can be obtained, which verifies that the validity of the method.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发