留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重复使用飞行器再入姿态的区间二型自适应模糊滑模控制设计

杨珍书 毛奇 窦立谦

杨珍书, 毛奇, 窦立谦等 . 可重复使用飞行器再入姿态的区间二型自适应模糊滑模控制设计[J]. 北京航空航天大学学报, 2020, 46(4): 781-790. doi: 10.13700/j.bh.1001-5965.2019.0474
引用本文: 杨珍书, 毛奇, 窦立谦等 . 可重复使用飞行器再入姿态的区间二型自适应模糊滑模控制设计[J]. 北京航空航天大学学报, 2020, 46(4): 781-790. doi: 10.13700/j.bh.1001-5965.2019.0474
YANG Zhenshu, MAO Qi, DOU Liqianet al. Interval type-2 adaptive fuzzy sliding mode control design of reentry attitude for reusable launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 781-790. doi: 10.13700/j.bh.1001-5965.2019.0474(in Chinese)
Citation: YANG Zhenshu, MAO Qi, DOU Liqianet al. Interval type-2 adaptive fuzzy sliding mode control design of reentry attitude for reusable launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 781-790. doi: 10.13700/j.bh.1001-5965.2019.0474(in Chinese)

可重复使用飞行器再入姿态的区间二型自适应模糊滑模控制设计

doi: 10.13700/j.bh.1001-5965.2019.0474
基金项目: 

国家自然科学基金 61773279

国家自然科学基金 61877340

江苏航空职业技术学院院级课题 JATC19010109

详细信息
    作者简介:

    杨珍书  女, 硕士, 助教。主要研究方向:飞控系统非线性建模及控制、故障检测及控制

    毛奇  男, 博士研究生。主要研究方向:鲁棒控制、非线性控制、飞行器建模与控制

    窦立谦  男, 博士, 副教授, 硕士生导师。主要研究方向:复杂系统建模与控制、飞行器建模与控制、多无人机协调优化控制

    通讯作者:

    杨珍书, E-mail: zsyang@tju.edu.cn

  • 中图分类号: V448.2

Interval type-2 adaptive fuzzy sliding mode control design of reentry attitude for reusable launch vehicles

Funds: 

National Natural Science Foundation of China 61773279

National Natural Science Foundation of China 61877340

Project of Jiangsu Aviation Technical College JATC19010109

More Information
  • 摘要:

    针对具有强非线性、多变量耦合特性的可重复使用飞行器(RLV),同时考虑模型参数不确定性和外界干扰对飞行器再入姿态跟踪的影响,提出了一种基于区间二型自适应模糊滑模的姿态控制方法。首先,建立飞行器再入动态模型,并基于反步思想将控制模型转化为姿态角和角速率相关子系统。其次,将模型参数不确定性和外界干扰视作子系统非线性项的一部分。再次,采用区间二型模糊系统逼近子系统非线性项,并结合自适应技术和滑模控制方法分别设计虚拟控制量和实际控制量。此外,引入一阶低通滤波器用以处理子系统虚拟控制律。通过Lyapunov方法的分析证明了闭环控制系统的稳定性,且飞行器姿态跟踪误差可收敛于原点附近的小邻域。最后,利用飞行器的数值仿真验证了所设计控制方法能有效跟踪飞行器参考指令,且对外界干扰有较强的鲁棒性。

     

  • 图 1  姿态角跟踪响应曲线

    Figure 1.  Attitude angle tracking response curves

    图 2  姿态角跟踪误差变化曲线

    Figure 2.  Attitude angle tracking error changing curves

    图 3  姿态角速率变化曲线

    Figure 3.  Attitude angular rate changing curves

    图 4  RLV力矩响应曲线

    Figure 4.  Torque response curves of RLV

    表  1  再入RLV初始参数值

    Table  1.   Initial parameter values of reentry RLV

    参数 数值
    高度h/ft 260 000
    速度v/(ft·s-1) 24 061
    纬度ϕ/(°) 0
    经度θ/(°) 0
    航迹角γ/(°) 0
    航向角χ/(°) 0
    α/(°) 12.60
    β/(°) 11.46
    μ/(°) -57.29
    p/((°)·s-1) 0
    q/((°)·s-1) 0
    r/((°)·s-1) 0
    下载: 导出CSV
  • [1] HALBE O, RAJA R G, PADHI R.Robust reentry guidance of a reusable launch vehicle using model predictive static programming[J].Journal of Guidance, Control, and Dynamics, 2014, 37(1):134-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d5ec783c601896babdde2bea08afbef
    [2] 窦立谦, 毛奇, 苏沛华.基于自适应模糊控制的可重复使用运载器再入姿态控制[J].控制与决策, 2018, 37(7):1181-1189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201807003

    DOU L Q, MAO Q, SU P H.Adaptive fuzzy attitude control design for reentry RLV[J].Control and Decision, 2018, 37(7):1181-1189(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201807003
    [3] GAO Z, JIANG B, SHI P, et al.Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique[J].Journal of the Franklin Institute, 2012, 349(4):1543-1560. doi: 10.1016/j.jfranklin.2011.11.003
    [4] XU B, ZHANG Y.Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model[J].Neurocomputing, 2015, 154:337-346. doi: 10.1016/j.neucom.2014.11.059
    [5] GROVES K P, SIGTHORSSON D O, SERRANI A, et al.Reference command tracking for a linearized model of an air-breathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2005: 2901-2914.
    [6] GEORGIE J, VALASEK J.Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles[J].Journal Guidance, Control, and Dynamics, 2003, 26(5):811-819. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aaf227e20b65fc8e13eb10588602b332
    [7] FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicle model[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416.
    [8] 刘燕斌, 陆宇平, 何真.高超音速飞机鲁棒自适应控制的研究[J].宇航学报, 2006, 27(4):620-624. doi: 10.3321/j.issn:1000-1328.2006.04.010

    LIU Y B, LU Y P, HE Z.Research on robust adaptive control for hypersonic vehicle[J].Journal of Astronautics, 2006, 27(4):620-624(in Chinese). doi: 10.3321/j.issn:1000-1328.2006.04.010
    [9] WANG F, HUA C, ZONG Q.Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J].International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327. doi: 10.1002/acs.2541
    [10] FALCOZ A, HENRY D, ZOLGHADRI A.Robust fault diagnosis for atmospheric reentry vehicles:A case study[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2010, 40(5):886-899. doi: 10.1109/TSMCA.2010.2063022
    [11] SHTESSEL Y B, BUFFINGTON J, BANDA S.Multiple timescale flight control using reconfigurable sliding modes[J].Journal of Guidance, Control, and Dynamics, 1999, 22(6):873-883.
    [12] STOTT J E, SHTESSEL Y B.Launch vehicle attitude control using sliding mode control and observation techniques[J].Journal of the Franklin Institute, 2012, 349(2):397-412. doi: 10.1016/j.jfranklin.2011.07.020
    [13] LIU J, VAZQUEZ S, WU L, et al.Extended state observer-based sliding-mode control for three-phase power converters[J].IEEE Transactions on Industrical Electronics, 2016, 64(1):22-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5029b59f62e23ad7540391389f5c9927
    [14] FU C, SARABAKHA A, KAYACAN E, et al.Input uncertainty sensitivity enhanced nonsingleton fuzzy logic controllers for long-term navigation of quadrotor UAVs[J].IEEE/ASME Transactions on Mechatronics, 2018, 23(2):725-734. https://ieeexplore.ieee.org/document/8304792/
    [15] SHEN Q, JIANG B, COCQUEMPOT V.Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle attitude dynamics with actuator faults[J].IEEE Transactions on Fuzzy Systems, 2013, 21(2):289-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8fbeeb48881ae9abb95d36af680f840
    [16] MAO Q, DOU L, ZONG Q, et al.Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control[J].Aerospace Science and Technology, 2018, 72:36-48. doi: 10.1016/j.ast.2017.10.012
    [17] KAYACAN E, RAMON H, KAYNAK O, et al.Towards agrobots:Trajectory control of an autonomous tractor using type-2 fuzzy logic controllers[J].IEEE/ASME Transactions on Mechatronics, 2015, 20(1):287-298. https://core.ac.uk/display/34605030
    [18] LIANG Q, MENDEL J M.Interval type-2 fuzzy logic systems:Theory and design[J].IEEE Transactions on Fuzzy Systems, 2000, 8(5):535-550. doi: 10.1109/91.873577
    [19] WU H, MENDEL J M.Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems[J].IEEE Transactions on Fuzzy Systems, 2002, 10(5):622-639. doi: 10.1109/TFUZZ.2002.803496
    [20] LI H, WU C, SHI P, et al.Control of nonlinear networked systems with packet dropouts:Interval type-2 fuzzy model-based approach[J].IEEE Transactions on Cybernetics, 2014, 45(11):2378-2389. https://www.ncbi.nlm.nih.gov/pubmed/25474817
    [21] KUMBASAR T.Robust stability analysis and systematic design of single input interval type-2 fuzzy logic controllers[J].IEEE Transactions on Fuzzy Systems, 2016, 24(3):675-694. doi: 10.1109/TFUZZ.2015.2471805
    [22] TAO X, YI J, YUAN R, et al.Control of a flexible air-breathing hypersonic vehicle with measurement noises using adaptive interval type-2 fuzzy logic system[C]//IEEE International Conference on Fuzzy Systems.Piscataway, NJ: IEEE Press, 2017.
    [23] WANG L X.Stable adaptive fuzzy control of nonlinear systems[J].IEEE Transactions on Fuzzy Systems, 1993, 1(2):146-155. doi: 10.1109/91.227383
    [24] WANG F, HUA C, ZONG Q.Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J].International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327. doi: 10.1002/acs.2541
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  27
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 录用日期:  2019-11-17
  • 网络出版日期:  2020-04-20
  • 整期出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答