[1] 王晓华, 方琪, 王文杰.基于网格运动统计的改进快速鲁棒特征图像匹配算法[J].模式识别与人工智能, 2019, 32(12):1133-1140.WANG X H, FANG Q, WANG W J.Image matching algorithm combining improved SURF algorithm with grid-based motion statistics[J].Pattern Recognition and Artificial Intelligence, 2019, 32(12):1133-1140(in Chinese). [2] 程向红, 李俊杰.基于运动平滑性与RANSAC优化的图像特征匹配算法[J].中国惯性技术学报, 2019, 27(6):765-770. CHENG X H, LI J J.Optimized image feature matching algorithm based on motion smoothness and RANSAC[J].Journal of Chinese Inertial Technology, 2019, 27(6):765-770(in Chinese). [3] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. [4] BAY H, TUYTELAARS T, VAN GOOL L.SURF:Speeded up robust features[C]//Computer Vision-ECCV 2006.Berlin:Springer, 2006:404-417. [5] RUBLEE E, RABAUD V, KONOLIGE K, et al.ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision.Piscataway:IEEE Press, 2011:2564-2571. [6] YI K M, TRULLS E, LEPETIT V, et al.LIFT:Learned invariant feature transform[C]//Computer Vision-ECCV 2016.Berlin:Springer, 2016:467-483. [7] LAGUNA A B, RIBA E, PONSA D, et al.Key.Net:Keypoint detection by handcrafted and learned CNN filters[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE Press, 2019:5835-5843. [8] SHEN X L, WANG C, LI X, et al.RF-NET:An end-to-end image matching network based on receptive field[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE Press, 2019:8124-8132. [9] 侯宏录, 李媛, 李光耀.改进SIFT匹配的动态背景下运动目标检测算法[J].自动化仪表, 2019, 40(8):60-64.HOU H L, LI Y, LI G Y.Moving target detection algorithm under dynamic background with improved SIFT matching[J].Process Automation Instrumentation, 2019, 40(8):60-64(in Chinese). [10] 张明浩, 杨耀权, 靳渤文.基于图像增强技术的SURF特征匹配算法研究[J].自动化与仪表, 2019, 34(9):98-102.ZHANG M H, YANG Y Q, JIN B W.Research on SURF feature matching algorithm based on image enhancement technology[J].Automation & Instrumentation, 2019, 34(9):98-102(in Chinese). [11] ROSTEN E, DRUMMOND T.Machine learning for high-speed corner detection[C]//Computer Vision-ECCV 2006.Berlin:Springer, 2006:430-443. [12] 高翔, 张涛, 刘毅.视觉SLAM十四讲:从理论到实践[M].2版.北京:电子工业出版社, 2019.GAO X, ZHANG T, LIU Y.14 lectures on visual SLAM:From theory to practice[M].2nd ed.Beijing:Publishing House of Electronics Industry, 2019(in Chinese). [13] CALONDER M, LEPETIT V, STRECHA C, et al.BRIEF:Binary robust independent elementary features[C]//ECCV'10:Proceedings of the 11th European Conference on Computer Vision:Part IV, 2010:778-792. [14] 杨炳坤, 程树英, 郑茜颖.改进的ORB特征匹配算法[J].传感器与微系统, 2020, 39(2):136-139.YANG B K, CHENG S Y, ZHENG Q Y.Improved ORB feature matching algorithm[J].Transducer and Microsystem Technologies, 2020, 39(2):136-139(in Chinese). [15] 杨弘凡, 李航, 陈凯阳, 等.基于改进ORB算法的图像特征点提取与匹配方法[J].图学学报, 2020, 41(4):548-555.YANG H F, LI H, CHEN K Y, et al.Image feature points extraction and matching method based on improved ORB algorithm[J].Journal of Graphics, 2020, 41(4):548-555(in Chinese). [16] MUJA M, LOWE D G.Fast approximate nearest neighbors with automatic algorithm configuration[C]//Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, 2009:331-340. [17] MUJA M, LOWE D G.Scalable nearest neighbor algorithms for high dimensional data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2227-2240. [18] FISCHLER M A, BOLLES R C.Random sample consensus[J].Communications of the ACM, 1981, 24(6):381-395. [19] SATTLER T, LEIBE B, KOBBELT L.SCRAMSAC:Improving RANSAC's efficiency with a spatial consistency filter[C]//2009 IEEE 12th International Conference on Computer Vision.Piscataway:IEEE Press, 2009:2090-2097. [20] BIAN J W, LIN W Y, MATSUSHITA Y, et al.GMS:Grid-based motion statistics for fast, ultra-robust feature correspondence[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE Press, 2017:2828-2837. [21] 柳长安, 艾壮, 赵丽娟.基于网格运动统计的自适应图像特征匹配算法[J].华中科技大学学报(自然科学版), 2020, 48(1):37-40.LIU C A, AI Z, ZHAO L J.Self-adaptive image feature matching algorithm based on grid motion statistics[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(1):37-40(in Chinese). [22] MUR-ARTAL R, TARDÓS J D.ORB-SLAM2:An open-source SLAM system for monocular, stereo, and RGB-D cameras[J].IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [23] ALCANTARILLA P F, BARTOLI A, DAVISON A J.KAZE features[C]//Computer Vision-ECCV 2012.Berlin:Springer, 2012:214-227. |