[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2012, Vol. 38 Issue (5) :636-640,647    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���ڷ�ˮ����ͼ����Զ��ָ��
����1, ������2, ����3, ��ʤ3*
1. �������պ����ѧ ��е���̼��Զ���ѧԺ, ���� 100191;
2. ���ҽ�ƴ�ѧ ҽѧӰ��ѧԺ, ��� 300203;
3. ��ɽ�й�ҵ�����о�Ժ, ��ɽ 215300
Object auto-segmentation based on watershed and graph cut
Liu Rong1, Peng Yanmin2, Tang Can3, Cheng Sheng3*
1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China;
3. Kunshan Industrial Technology Research Institute, Kunshan 215300, China

ժҪ
�����
�������
Download: PDF (1203KB)   HTML KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ϊ���١�׼ȷ����ȡCT����ͼ����Ŀ������,�ѷ�ˮ���ͼ������.����ѡ��Ŀ���������������,����������֮��������÷�ˮ���㷨Ԥ�ָ�Ϊ����С����,��ÿһ��С������Ϊһ���ڵ�,����ͼ�ṹ.�Ѷ�Դ��Ͷ���򻯳ɵ�Դ��͵����,�����µ�ͼ�ṹ.Ȼ�����������/��С�������и�,��ȡĿ������.������һ��CTĿ�����������ӳ�䵽��һ��CT��,�ֱ��������С��������Ϊ��CT����������.��������������ȡ����,������CT��������ѭ������.ͨ��ʵ��֤�����㷨�ڷָ�Ч���ͷָ�ʱ��������������ͳ�㷨,ͬʱ,ʵ������ά�ռ��������������Զ���ȡ.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
����
������
����
��ʤ
�ؼ����� ͼ��   ��ˮ��   �����/��С��   ��ά�ָ�   ͼ����     
Abstract�� In order to segment CT slices mostly and accurately, watershed algorithm and graph cut were combined. Firstly, the inner contour and the outer contour of the target object were selected, and then watershed algorithm was applied to divide the region between contours into series of smaller regions. Each smaller region was regarded as a node to establish the graph. Multiple sources and multiple sinks can be converted to the single source and the single sink to refine the graph. Secondly, the target object of the first CT can be extracted by the maximal-flow cut. Thirdly, mapping the contour to the next CT, the contour was reduced and expanded to regard as the inner contours and the outer contours. Then the next CT was segmented. Followed by the cycling, the entire sequence of CT will be operated. The experiment proves that this algorithm is more effective in the segmentation and the running time than the other traditional algorithms. Meanwhile, the contours of the series of CT were extracted automatically.
Keywords�� graph cut   watershed algorithm   max flow/min cut   the three-dimensional segmentation   image processing     
Received 2011-03-04;
Fund:����ʡ�Ƽ���Ŀ(BE2009078)
���ñ���:   
����, ������, ����, ��ʤ.���ڷ�ˮ����ͼ����Զ��ָ��[J]  �������պ����ѧѧ��, 2012,V38(5): 636-640,647
Liu Rong, Peng Yanmin, Tang Can, Cheng Sheng.Object auto-segmentation based on watershed and graph cut[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2012,V38(5): 636-640,647
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2012/V38/I5/636
Copyright 2010 by �������պ����ѧѧ��