北京航空航天大学学报 ›› 2013, Vol. 39 ›› Issue (10): 1381-1386.

• 论文 • 上一篇    下一篇

基于DPSO-SA的低轨预警系统初始任务规划方法

简平1, 邹鹏1, 熊伟2   

  1. 1. 装备学院 研究生管理大队, 北京 101416;
    2. 装备学院 复杂电子系统仿真实验室, 北京101416
  • 收稿日期:2012-12-21 出版日期:2013-10-30 发布日期:2013-11-13
  • 作者简介:简平(1985-),男,江西新余人,博士生,jianping85730@sina.com.
  • 基金资助:

    装备预研资助项目; 湖南省研究生科研创新资助项目(CX2010B025)

Original task planning method of early warning system of LEO based on DPSO-SA

Jian Ping1, Zou Peng1, Xiong Wei2   

  1. 1. Company of Postgraduate Management Team, Equipment Academy, Beijing 101416, China;
    2. Science and Technology on Complex Electronic System Simulation Laboratory, Equipment Academy, Beijing 101416, China
  • Received:2012-12-21 Online:2013-10-30 Published:2013-11-13

摘要: 为提高天基低轨预警系统在导弹跟踪任务中的效率,建立了天基低轨预警系统初始任务规划模型.该模型包含跟踪精度、任务完成率和资源松弛度等优化指标,考虑导弹跟踪中目标信息的不确定性,定义并构建了跟踪原子任务的不确定度和动态优先级.在此基础上,提出采用离散粒子群(DPSO,Discrete Particle Swarm Optimization)-模拟退火(SA,Simulated Annealing)混合优化算法求解初始任务规划模型,提高了算法收敛速度、精度以及全局搜索能力.仿真算例验证了模型的优点以及DPSO-SA混合优化算法的有效性.

Abstract: To improve the resource efficiency for missile tracking with early warning system of low-earth-orbit(LEO), the original task planning model of early warning system of LEO was set up. The model includes the optimizing indexes of tracking precision, task accomplishment and resource slack. The dynamic priority of meta tracking task was defined and designed in view of the information uncertainty of missile object in tracking. Based on the model, a mixed discrete particle swarm optimization (DPSO) and simulated annealing (SA) algorithm was proposed to solve the original task planning problem. The algorithm improves the seeking and solving ability for the global optimal result. Simulation results show the advantage of the model and the validity of DPSO-SA algorithm.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发