北京航空航天大学学报 ›› 2014, Vol. 40 ›› Issue (10): 1477-1480.doi: 10.13700/j.bh.1001-5965.2013.0644

• 论文 • 上一篇    

基于三维最小二乘方法的空间直线度误差评定

王炳杰1, 赵军鹏1, 王春洁1,2   

  1. 1. 北京航空航天大学 机械工程及自动化学院, 北京 100191;
    2. 北京航空航天大学 虚拟现实技术与系统国家重点实验室, 北京 100191
  • 收稿日期:2013-11-14 出版日期:2014-10-20 发布日期:2014-10-29
  • 通讯作者: 王春洁 E-mail:wangcj@buaa.edu.cn
  • 作者简介:王炳杰(1990-),男,山东诸城人,硕士生,wbjhu@163.com
  • 基金资助:

    “十二五”国防基础科研资助项目(C0320110002)

Spatial straightness error evaluation based on three-dimensional least squares method

Wang Bingjie1, Zhao Junpeng1, Wang Chunjie1,2   

  1. 1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    2. State Key Laboratory of Virtual Reality Technology and Systems, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2013-11-14 Online:2014-10-20 Published:2014-10-29

摘要:

空间直线度误差是评定机械产品精度的一项重要指标,实际工程中对空间直线度误差评定算法的精度要求越来越高.为了准确评定空间直线度误差,参照国家标准(GB/T 11336—2004),采用三维最小二乘方法建立了空间直线拟合的数学模型,并给出了该数学模型的精确解.基于最小二乘拟合中线,采用空间投影、坐标变换和格点法求得最小二乘中线包容圆柱面直径.采用数值算例验证了新方法的有效性.提出的空间直线度误差评定方法精度高、鲁棒性好且易于编程实现.

关键词: 空间直线度误差, 空间直线拟合, 空间投影, 坐标变换, 三维最小二乘法

Abstract:

Spatial straightness error is very important for the assessment of mechanical product precision. The spatial straightness error evaluation algorithm with high precision is needed in real project. In order to evaluate the spatial straightness error more accurately, a mathematical model of spatial straight line fitting was established based on the national standard (GB/T 11336—2004) and three-dimensional least squares method, the exact solution to the model was deduced. The diameter of the minimum cylindrical surface of the least squares was obtained by using the method of spatial projection, coordinate transformation and lattice method. The proposed method was validated by numerical experiments. It is not only more accurate and robust, but also easy to be implemented.

Key words: spatial straightness error, spatial straight line fitting, method of spatial projection, coordinate transformation, three-dimensional least squares method

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发