北京航空航天大学学报 ›› 2015, Vol. 41 ›› Issue (2): 252-258.doi: 10.13700/j.bh.1001-5965.2014.0119

• 论文 • 上一篇    下一篇

基于MODPSO-GSA的协同空战武器目标分配

顾佼佼1, 赵建军1, 颜骥2, 陈学东2   

  1. 1. 海军航空工程学院 科研部, 烟台 264001;
    2. 91352 部队, 威海 264208
  • 收稿日期:2014-03-12 出版日期:2015-02-20 发布日期:2015-03-12
  • 通讯作者: 赵建军(1965—), 男, 江苏南通人, 教授, zjj@hotmail.com, 主要研究方向为海军武器装备攻防体系对抗与信息化. E-mail:zjj@hotmail.com
  • 作者简介:顾佼佼(1986—), 男, 山东青岛人, 博士生, vxgu86@hotmail.com
  • 基金资助:

    国家自然科学基金资助项目(61102167, 61105165); 青年科学基金资助项目(61002006); 航空科学基金资助项目(20135184008)

Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat

GU Jiaojiao1, ZHAO Jianjun1, YAN Ji2, CHEN Xuedong2   

  1. 1. Department of Scientific Research, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. The 91352 Army, Weihai 264208, China
  • Received:2014-03-12 Online:2015-02-20 Published:2015-03-12

摘要:

提出基于多目标决策理论的协同空战武器目标分配模型,并用进化多目标优化算法求解.空战是一个多阶段攻防过程,针对多数空战武器目标分配采用一次性完全分配、不考虑火力资源消耗等不足,构建多目标决策模型,在达到毁伤门限的前提下,同时对一次攻击后使敌编队的总期望剩余威胁最小和分配导弹消耗量最小两个目标函数寻优.提出用多目标离散粒子群-引力搜索算法(MODPSO-GSA)求解分配模型,该混合进化多目标优化算法结合二者优点,具有稳定的全局搜索能力并保证收敛到Pareto前沿.该算法可求得满足毁伤门限的不同耗弹量的分配方案最优解集以供指挥员决策参考.仿真算例验证了新模型及所提出MODPSO-GSA进化多目标优化求解算法的有效性.

关键词: 目标分配, 多目标决策, 进化多目标优化, 粒子群, 引力搜索, Pareto前沿

Abstract:

An air combat weapon-target assignment (WTA) model based on multi-objective decision theory with a hybrid evolutionary multi-objective optimization algorithm solver was proposed. Air combat is a multi-stage process of attack-defense countermeasure, existing WTA models are based on disposable fully allocated assignment without considering the missile consumption, which does not conform to the actual air combat process. The minimum of total expected remaining threats and total consumption of missiles were selected as two objectives functions of the multi-objective decision model, with the premise of reaching damage threshold. The hybrid multi-objective discrete particle swarm optimization-gravitational search algorithm (MODPSO-GSA) was proposed to handle the model, which possesses stable global search capacity and promises to converge to Pareto frontier. A Pareto optimal solution set with damage threshold met can be obtained, which offers decision reference to the commander. Simulation results verify that the model is of advantage and the proposed MODPSO-GSA is effective.

Key words: weapon target assignment, multi-objective decision making, evolutionary multi-objective optimization, particle swarm optimization, gravitational search, Pareto frontier

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发