留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交互式多模型粒子滤波优化重采样算法

周卫东 孙天 储敏 崔艳青

周卫东, 孙天, 储敏, 等 . 交互式多模型粒子滤波优化重采样算法[J]. 北京航空航天大学学报, 2017, 43(5): 865-871. doi: 10.13700/j.bh.1001-5965.2016.0348
引用本文: 周卫东, 孙天, 储敏, 等 . 交互式多模型粒子滤波优化重采样算法[J]. 北京航空航天大学学报, 2017, 43(5): 865-871. doi: 10.13700/j.bh.1001-5965.2016.0348
ZHOU Weidong, SUN Tian, CHU Min, et al. Interacting multiple model particle filter optimization resampling algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 865-871. doi: 10.13700/j.bh.1001-5965.2016.0348(in Chinese)
Citation: ZHOU Weidong, SUN Tian, CHU Min, et al. Interacting multiple model particle filter optimization resampling algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 865-871. doi: 10.13700/j.bh.1001-5965.2016.0348(in Chinese)

交互式多模型粒子滤波优化重采样算法

doi: 10.13700/j.bh.1001-5965.2016.0348
基金项目: 

国家自然科学基金 61573112

详细信息
    作者简介:

    周卫东, 男, 博士, 教授, 博士生导师。主要研究方向:组合导航、数据融合技术

    孙天, 男, 硕士研究生。主要研究方向:组合导航、数据融合技术

    通讯作者:

    孙天, E-mail:suntian@hrbeu.edu.cn

  • 中图分类号: TN957.52

Interacting multiple model particle filter optimization resampling algorithm

Funds: 

National Natural Science Foundation of China 61573112

More Information
  • 摘要:

    针对标准交互式多模型粒子滤波(IMMPF)算法中存在粒子退化及多样性匮乏问题,提出了交互式多模型粒子滤波优化重采样(IMMPFOR)算法,利用线性优化理论改善模型中具有小权值的粒子精度。该算法的新颖性体现在给定量测信息条件下,利用线性优化方法及模型交互概率将每个模型中拥有小权值的粒子替换成新的粒子。新的粒子既包含本模型中粒子信息,又包含了本模型与其他模型交互后的粒子信息。目标跟踪的仿真结果证明:每个模型新产生的粒子集合可以准确地近似真实状态后验概率密度函数,系统的估计精度与标准IMMPF算法相比有较大提升。

     

  • 图 1  机动目标真实轨迹和估计轨迹

    Figure 1.  True and estimated trajectory of maneuvering target

    图 2  位置和速度均方根误差曲线

    Figure 2.  Curves of root mean square error in position and velocity

    图 3  x方向和y方向位置均方根误差曲线

    Figure 3.  Curves of root mean square error in x and y position

    图 4  x方向和y方向速度均方根误差曲线

    Figure 4.  Curves of root mean square error in x and y velocity

    图 5  N=2 000时位置和速度均方根误差曲线

    Figure 5.  Curves of root mean square error in position and velocity at N=2 000

    表  1  位置均方根误差峰值和均值(N=500)

    Table  1.   Peak and average of root mean square error in distance (N=500)

    算法 RMSE/m
    峰值 均值
    IMMPF 910.1 420.7
    IMMPFOR 552.4 312.3
    下载: 导出CSV
  • [1] SEAH C E, HWANG I.State estimation for stochastic linear hybrid systems with continuous state dependent transitions: An IMM approach [J].IEEE Transactions on Aerospace & Electronics Systems, 2009, 45(1):376-392.
    [2] BLOM H A P, BAR-SHALOM Y.The interacting multiple model algorithm for systems with Markovian switching coefficients [J].IEEE Transactions on Automatic Control, 1988, 33(8):780-783. doi: 10.1109/9.1299
    [3] VIVONE G, BRACA P, HORSTMANN J.Variable structure interacting multiple model algorithm for ship tracking using HF surface wave radar data[C]// Oceans-2015.Piscataway, NJ:IEEE Press, 2015:1-8.
    [4] ZHOU W, LIU M.Robust interacting multiple model algorithms based on multi-sensor fusion criteria [J].International Journal of Systems Science, 2016, 47(1):92-106. doi: 10.1080/00207721.2015.1029566
    [5] 朱志宇.粒子滤波算法及其应用[M].北京:科学出版社, 2010.

    ZHU Z Y.Particle filter algorithm and its application[M].Beijing:Science Press, 2010(in Chinese).
    [6] GORDON N J, SALMOND D J, SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J].IEEE Proceedings F-Radar & Signal Processing, 1993, 140(2):107-113. http://ieeexplore.ieee.org/document/210672/?arnumber=210672
    [7] BOERS Y, DRIESSEN J N.Interacting multiple model particle filter [J].IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5):344-349. doi: 10.1049/ip-rsn:20030741
    [8] 王晓, 韩崇昭.基于混合采样的多模型机动目标跟踪算法[J].自动化学报, 2013, 39(7):1152-1156. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201307024.htm

    WANG X, HAN C Z.A multiple model particle filter for maneuvering target tracking based on composite sampling[J].Acta Automatica Sinica, 2013, 39(7):1152-1156(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201307024.htm
    [9] 王伟, 余玉揆.多点测试的多模型机动目标跟踪算法[J].自动化学报, 2015, 41(6):1201-1212. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201506014.htm

    WANG W, YU Y K.Multi-try and multi-model particle filter for maneuvering target tracking[J].Acta Automatica Sinica, 2015, 41(6):1201-1212(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201506014.htm
    [10] MCGINNITY S, IRWIN G W.Multiple model bootstrap filter for maneuvering target tracking [J].IEEE Transactions on Aerospace & Electronics Systems, 2000, 36(3):1006-1012. http://adsabs.harvard.edu/abs/2000ITAES..36.1006M
    [11] VAN DER MERWE R, DOUCET A, DE FREITAS N, et al.The unscented particle filter [J].Advances in Neural Information Processing Systems, 2000, 13:584-590.
    [12] MUSSO C, OUDJANE N, LE GRAND F.Improving regularized particle filters[M]//DOUCET A, DE FREITAS N, GORDON N.Sequential Monte Carlo method in practice.New York:Springer-Verlag, 2001:247-271.
    [13] TANIZAKI H.Nonlinear filters based on Taylor series expansion [M]// TANIZAKI H.Nonlinear filters:Estimation and applications.Berlin:Springer, 1993, 25(6):81-88.
    [14] LIU J S, CHEN R.Sequential Monte Carlo methods for dynamic systems [J].Journal of the American Statistical Association, 1998, 93(443):1032-1044. doi: 10.1080/01621459.1998.10473765
    [15] 邹国辉, 敬忠良, 胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报, 2006, 40(7):1135-1139. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200607014.htm

    ZOU G H, JING Z L, HU H T.A particle filter algorithm based on optimizing combination resampling[J].Journal of Shanghai Jiaotong University, 2006, 40(7):1135-1139(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200607014.htm
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  905
  • HTML全文浏览量:  104
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-28
  • 录用日期:  2016-07-07
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答