留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非绝热单孔容腔瞬态响应的零维建模

丁水汀 于航 邱天

丁水汀, 于航, 邱天等 . 非绝热单孔容腔瞬态响应的零维建模[J]. 北京航空航天大学学报, 2018, 44(2): 215-222. doi: 10.13700/j.bh.1001-5965.2017.0093
引用本文: 丁水汀, 于航, 邱天等 . 非绝热单孔容腔瞬态响应的零维建模[J]. 北京航空航天大学学报, 2018, 44(2): 215-222. doi: 10.13700/j.bh.1001-5965.2017.0093
DING Shuiting, YU Hang, QIU Tianet al. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 215-222. doi: 10.13700/j.bh.1001-5965.2017.0093(in Chinese)
Citation: DING Shuiting, YU Hang, QIU Tianet al. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 215-222. doi: 10.13700/j.bh.1001-5965.2017.0093(in Chinese)

非绝热单孔容腔瞬态响应的零维建模

doi: 10.13700/j.bh.1001-5965.2017.0093
基金项目: 

长江学者和创新团队发展计划 IRT0905

中国博士后科学基金 2016M591047

详细信息
    作者简介:

    丁水汀 男, 博士, 教授, 博士生导师。主要研究方向:燃气轮机热端旋转部件流动与换热机理、航空发动机适航性设计与验证技术

    于航 男, 博士研究生。主要研究方向:航空发动机空气系统瞬态演化机理

    邱天 男, 博士, 讲师。主要研究方向:航空发动机适航性设计、系统安全性、一体化模型

    通讯作者:

    邱天, E-mail:qiutian@buaa.edu.cn

  • 中图分类号: V231.1

Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening

Funds: 

Program for Changjiang Scholars and Innovative Research Team in University IRT0905

China Postdoctoral Science Foundation 2016M591047

More Information
  • 摘要:

    针对换热情况下理想绝热单孔容腔模型瞬态响应预测误差大的现状,提出一种考虑换热对容腔瞬态响应影响的非绝热单孔容腔零维瞬态建模方法。通过研究影响气体与容腔壁面换热的因素,采用量纲分析推导了与换热相关的特征数方程,利用CFD数值模拟确定特征数方程的具体函数形式,显示表达了绝热单孔容腔模型未考虑的换热项,建立了非绝热单孔容腔零维瞬态模型。通过与数值模拟进行对比分析,结果表明:非绝热单孔容腔零维瞬态模型与CFD数值模拟计算的压力和温度的响应规律吻合很好,最大相对误差不超过0.8%,验证了模型的准确性和建模方法的可行性;绝热单孔容腔零维瞬态模型计算结果较CFD数值模拟结果的最大相对误差达6%,表明非绝热模型较绝热模型能够更精确地反映容腔真实响应规律。此外,非绝热单孔容腔零维瞬态模型与CFD数值模拟相比,在1%的精度水平下,降低了3个维度,也大幅降低了单孔容腔瞬态响应模拟的计算量,可以有效地支撑航空发动机空气系统中的容腔高精度建模。

     

  • 图 1  非绝热单孔容腔零维瞬态建模方法

    Figure 1.  Zero-dimensional transient modeling method of non-adiabatic cavity with single opening

    图 2  非绝热零维瞬态模型计算流程

    Figure 2.  Calculation flowchart of non-adiabatic zero-dimensional transient model

    图 3  容腔物理模型

    Figure 3.  Physical model of cavity

    图 4  数值计算模型网格划分

    Figure 4.  Meshing of numerical calculation model

    图 5  无量纲数关系及拟合数据

    Figure 5.  Relation of dimensionless number and fitting data

    图 6  CFD数值模拟和NZTM、绝热模型结果对比

    Figure 6.  Comparison of results calculated by CFD simulation, NZTM and adiabatic model

    图 7  NZTM与CFD数值模拟压力的相对误差

    Figure 7.  Relative error of pressure between NZTM and CFD simulation

    图 8  NZTM与绝热模型压力的相对误差

    Figure 8.  Relative error of pressure between NZTM and adiabatic model

    图 9  NZTM与等温、绝热模型压力计算结果对比

    Figure 9.  Comparison of pressure calculated by NZTM, isothermal and adiabatic model

    表  1  参数量纲

    Table  1.   Dimension of parameters

    参数 量纲
    k ML/(ΘT3)
    μ M/(LT)
    ρi M/L3
    cp L2/(ΘT2)
    d L
    ui L/T
    Tv Θ
    h M/(ΘT3)
    下载: 导出CSV

    表  2  初始边界和计算边界条件参数

    Table  2.   Initial boundary and computational boundary condition parameters

    位置 压力/Pa 温度/K
    t=0 t>0 t=0 t>0
    进口 101 325 191 504 288.15 288.15
    壁面 323.15 323.15
    腔内 101 325 323.15
    下载: 导出CSV
  • [1] SEHRA A K, JR WHITLOW W.Propulsion and power for 21st century aviation[J].Progress in Aerospace Sciences, 2004, 40(4-5):199-235. doi: 10.1016/j.paerosci.2004.06.003
    [2] 刘传凯, 李圆圆, 李艳茹, 等.涡轮轴断裂条件下空气系统强瞬变过程分析[J].北京航空航天大学学报, 2016, 42(1):47-53. http://bhxb.buaa.edu.cn/CN/abstract/abstract13672.shtml

    LIU C K, LI Y Y, LI Y R, et al.Dynamic analysis of air system with fast transients in shaft failure event[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):47-53(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13672.shtml
    [3] DUTTON J C, COVERDILL R E.Experiments to study the gaseous discharge and filling of vessels[J].International Journal of Engineering Education, 1997, 13(2):123-134. https://www.researchgate.net/publication/251283119_Experiments_to_Study_the_Gaseous_Discharge_and_Filling_of_Vessels
    [4] THORNCROFT G, PATTON J S, GORDON R. Modeling compressible air flow in a charging or discharging vessel and assessment of polytropic exponent[C]//ASEE Annual Conference. Honolulu: ASEE, 2007: 1-18.
    [5] NARDINI G, PARONCINI M.Heat transfer experiment on natural convection in a square cavity with discrete sources[J].Heat and Mass Transfer, 2012, 48(11):1855-1865. doi: 10.1007/s00231-012-1026-6
    [6] DENG Q H.Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source-sink pairs[J].International Journal of Heat and Mass Transfer, 2008, 51(25-26):5949-5957. doi: 10.1016/j.ijheatmasstransfer.2008.04.062
    [7] NASSAR N N, MEHROTRA A K.Design of a laboratory experiment on heat transfer in an agitated vessel[J].Education for Chemical Engineers, 2011, 6(3):83-89. doi: 10.1016/j.ece.2011.06.001
    [8] OWCZAREK J A, PROGELHOF R C.Rapid discharge of a gas from a cylindrical vessel through a nozzle[J].American Institute of Aeronautics and Astronautics, 1963, 1(9):2182-2183. doi: 10.2514/3.2034
    [9] CHOW W L, TING A A L, TSAI P H.Discharge from a vessel through an axisymmetric control valve[J].Journal of Applied Mechanics, 1987, 54(2):447-452. doi: 10.1115/1.3173035
    [10] 陈光, 洪杰.航空燃气涡轮发动机结构[M].北京:北京航空航天大学出版社, 2010:170-171.

    CHEN G, HONG J.Structure of aircraft gas turbine engine[M].Beijing:Beihang University Press, 2010:170-171(in Chinese).
    [11] HORLOCK J H, WOODS W A. The thermodynamics of charging and discharging processes[C]//Proceedings of the Institution of Mechanical Engineers, London: IMechE, 1965, 180(310): 16-24.
    [12] 刘传凯, 刘海明, 李艳茹, 等.强瞬变空气系统的模块化仿真建模[J].航空动力学报, 2015, 30(8):1826-1833. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201508005

    LIU C K, LIU H M, LI Y R, et al.Modularized simulation of air system with fast transient[J].Journal of Aerospace Power, 2015, 30(8):1826-1833(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201508005
    [13] 潘锦珊, 单鹏.气体动力学基础[M].北京:国防工业出版社, 2011:87-90.

    PAN J S, SHAN P.Fundamentals of gasdynamics[M].Beijing:National Defense Industry Press, 2011:87-90(in Chinese).
    [14] 骆广琦, 桑增产, 王如根, 等.航空燃气涡轮发动机数值仿真[M].北京:国防工业出版社, 2007:84-86.

    LUO G Q, SANG Z C, WANG R G, et al.Numerical methods for aviation gas turbine engine simulation[M].Beijing:National Defense Industry Press, 2007:84-86(in Chinese).
    [15] 邹滋祥.相似理论在叶轮机械模型研究中的应用[M].北京:科学出版社, 1984:17-24.

    ZOU Z X.Application of similarity theory in turbomachinery model[M].Beijing:Science Press, 1984:17-24(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  682
  • HTML全文浏览量:  98
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 录用日期:  2017-05-19
  • 网络出版日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答