Conjugate heat transfer characteristics of enclosure cavity in near space environment
-
摘要:
以临近空间浮空器载荷舱为应用背景,对复杂热边界条件下含热源的三维封闭方腔内自然对流、表面辐射和导热的耦合问题进行了数值模拟。综合考虑对流换热、长波辐射、太阳辐射等因素的影响,建立了临近空间热环境模型。通过Fluent软件用户自定义函数(UDF)引入外部非定常的辐射-对流耦合热边界条件,对腔内换热特性的昼夜变化进行研究,并分析了腔壁厚度、发射率和导热系数对其的影响。数值结果表明,腔内平均温度昼夜变化很小,约为12.9 K,但温度场分布随太阳方位变化而变化;腔内对流换热较弱,同一时刻最大温差约为71.3 K;腔壁热阻和发射率增加会削弱自然对流的强度。
Abstract:Aimed at the application of near space aerostats' load cabins, numerical simulation of natural convection, surface thermal radiation and heat conduction in a cubical enclosure cavity with a heat source in complex thermal boundary conditions was carried out. A model of near-space thermal environment was established considering the effects of convective heat transfer, infrared radiation and solar radiation. The diurnal variation of the thermal characteristics in the enclosure cavity was studied by introducing the external unsteady convection-radiation coupling thermal boundary conditions through the Fluent software's user-defined function (UDF). The effects of solid wall thickness, emissivity and thermal conductivity were discussed. The numerical results indicate that the average temperature change in the enclosure cavity is about 12.9 K during one day, and the temperature field distribution changes with the sun's position. The natural convection in the enclosure cavity is weak and the maximum temperature difference is 71.3 K at the same time. Increased thermal resistance and surface emissivity lead to weakening of natural convection in the cavity.
-
Key words:
- near space /
- enclosure cavity /
- conjugate heat transfer /
- natural convection /
- numerical simulation
-
表 1 0:00时刻腔内顶面辐射和对流换热量
Table 1. Radiation and convective heat transfer at top surface in cavity at 0:00
内表面发射率 辐射换热量/W 对流换热量/W 总换热量/W 0.2 2.99 1.92 4.91 0.4 3.30 1.73 5.03 0.6 3.43 1.65 5.08 0.8 3.47 1.63 5.10 -
[1] 夏新林, 李德富, 杨小川.平流层浮空器的热特性与研究现状[J].航空学报, 2009, 30(4):577-583. http://www.cqvip.com/QK/91925X/200904/30176865.htmlXIA X L, LI D F, YANG X C.Thermal characteristics of stratospheric aerostats and their research[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(4):577-583(in Chinese). http://www.cqvip.com/QK/91925X/200904/30176865.html [2] FARLEY R E. Balloonascent: 3-D simulation tool for the ascent and float of high-altitude balloons: AIAA-2005-7412[R]. Reston: AIAA, 2005. [3] DAI Q M, FANG X D, LI X J, et al.Performance simulation of high altitude scientific balloons[J].Advances in Space Research, 2012, 49(6):1045-1052. doi: 10.1016/j.asr.2011.12.026 [4] CHOI S K, KIM S O.Turbulence modeling of natural convection in enclosures:A review[J].Journal of Mechanical Science and Technology, 2012, 26(1):283-297. doi: 10.1007/s12206-011-1037-0 [5] XAMÁN J, ARCE J, ÁLVAREZ G, et al.Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall[J].International Journal of Thermal Sciences, 2008, 47(12):1630-1638. doi: 10.1016/j.ijthermalsci.2008.01.012 [6] KUZNETSOV G V, SHEREMET M A.Numerical simulation of turbulent natural convection in a rectangular enclosure having finite thickness walls[J].International Journal of Heat & Mass Transfer, 2010, 53(1):163-177. http://www.sciencedirect.com/science/article/pii/S0017931009005249 [7] MARTYUSHEY S G, SHEREMET M A.Conjugate natural convection combined with surface thermal radiation in an air filled cavity with internal heat source[J].International Journal of Thermal Sciences, 2014, 76(2):51-67. http://www.sciencedirect.com/science/article/pii/S1290072913002019 [8] MARTYUSHEY S G, SHEREMET M A.Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source[J].International Journal of Heat & Mass Transfer, 2014, 73(9):340-353. http://www.sciencedirect.com/science/article/pii/S0017931014001264 [9] 许玉, 方贤德, 李小建, 等.浮空器载荷舱热特性研究[J].科学技术与工程, 2011, 11(30):7577-7579. doi: 10.3969/j.issn.1671-1815.2011.30.057XU Y, FANG X D, LI X J, et al.A study of thermal characteristics of aerostats' load cabins[J].Science Technology and Engineering, 2011, 11(30):7577-7579(in Chinese). doi: 10.3969/j.issn.1671-1815.2011.30.057 [10] 邓丽君. 一种临近空间浮空器热控系统的研究[D]. 南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197067.htmDENG L J. Study on thermal control system of a near space vehiel[D]. Nanjing: Nanjing University of Science and Technology, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197067.htm [11] 李小建. 临近空间浮空器热-结构耦合数值模拟研究[D]. 南京: 南京航空航天大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060019.htmLI X J. Numerical simulation of thermal-structure coupling for near space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060019.htm [12] 张贺磊, 方贤德, 戴秋敏.临近空间飞艇内部自然对流换热计算研究[J].宇航学报, 2016, 37(7):879-886. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201504002.htmZHANG H L, FANG X D, DAI Q M.Investigation on internal natural convection of stratospheric airship[J].Journal of Astronautics, 2016, 37(7):879-886(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201504002.htm [13] 刘强, 武哲, 祝明, 等.平流层气球热动力学仿真[J].北京航空航天大学学报, 2013, 39(12):1578-1583. http://bhxb.buaa.edu.cn/CN/abstract/abstract12793.shtmlLIU Q, WU Z, ZHU M, et al.Thermal-dynamic simulation of stratospheric balloon[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1578-1583(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12793.shtml [14] 徐向华, 程雪涛, 梁新刚.平流层浮空器的热数值分析[J].清华大学学报(自然科学版), 2009, 49(11):1848-1851. doi: 10.3321/j.issn:1000-0054.2009.11.027XU X H, CHENG X T, LIANG X G.Thermal analysis of a stratospheric airship[J].Journal of Tsinghua University(Science and Technology), 2009, 49(11):1848-1851(in Chinese). doi: 10.3321/j.issn:1000-0054.2009.11.027 [15] 夏新林, 李德富, 杨小川.复合热条件下椭球形封闭腔内低压气体的自然对流[J].航空学报, 2010, 31(3):453-458. http://www.cqvip.com/QK/91925X/201003/33333397.htmlXIA X L, LI D F, YANG X C.Natural convection of low pressure gas in ellipsoidal enclosure induced by combined thermal conditions[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(3):453-458(in Chinese). http://www.cqvip.com/QK/91925X/201003/33333397.html [16] 邓启红. 室内空气对流的特征与模拟[D]. 长沙: 湖南大学, 2003.DENG Q H. Modeling and characteristics of indoor air convection[D]. Changsha: Hunan University, 2003(in Chinese).