北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (11): 2373-2379.doi: 10.13700/j.bh.1001-5965.2018.0091

• 论文 • 上一篇    下一篇

MEMS陀螺阵列的RCC-OBE估计融合方法

沈强1, 刘洁瑜1, 赵乾2, 王琪1   

  1. 1. 火箭军工程大学 导弹工程学院, 西安 710025;
    2. 火箭军士官学校 测试控制系, 青州 262500
  • 收稿日期:2018-02-22 修回日期:2018-06-11 出版日期:2018-11-20 发布日期:2018-11-27
  • 通讯作者: 刘洁瑜,E-mail:liujieyu128@163.com E-mail:liujieyu128@163.com
  • 作者简介:沈强,男,博士研究生。主要研究方向:集员估计理论、信息融合以及MEMS陀螺阵列融合方法;刘洁瑜,女,博士,教授,博士生导师。主要研究方向:惯性导航技术。
  • 基金资助:
    国家自然科学基金(61503390,61503392)

RCC-OBE estimation fusion approach for MEMS gyro array

SHEN Qiang1, LIU Jieyu1, ZHAO Qian2, WANG Qi1   

  1. 1. Missile Engineering College, Rocket Force University of Engineering, Xi'an 710025, China;
    2. Department of Measurement and Control, Rocket Force Sergeant School, Qingzhou 262500, China
  • Received:2018-02-22 Revised:2018-06-11 Online:2018-11-20 Published:2018-11-27
  • Supported by:
    National Natural Science Foundation of China (61503390, 61503392)

摘要: 为提高微机电系统(MEMS)陀螺的精度,提出一种基于松弛Chebyshev中心(RCC)的最优定界椭球(OBE)算法,并用于陀螺阵列信号的融合。以单个陀螺误差输出模型为基础,建立了阵列系统的机动融合模型;由于噪声统计特性的不确定会导致传统融合方法精度下降,引入仅要求噪声未知但有界的集员估计理论,运用OBE算法实现角速率信号的稳健估计;在OBE算法中,往往采用椭球几何中心作为真实值的点估计,但该中心并没有理论上的最优特性,而可行集的Chebyshev中心具有很多优良特性,同时,考虑到准确的Chebyshev中心求解十分困难,转而求解可行集的RCC,作为速率信号的点估计,设计了以RCC作为输出的OBE更新过程和新的参数优化准则。采用6个陀螺构成的阵列进行了验证试验,结果表明基于该算法的阵列估计融合方法在获得角速率保证边界的基础上,可以进一步提高MEMS陀螺精度。

关键词: 微机电系统(MEMS)陀螺, 陀螺阵列, 最优定界椭球(OBE)算法, 数据融合, Chebyshev中心

Abstract: In order to improve the accuracy of micro-electro-mechanical system (MEMS) gyro, an optimal bounding ellipsoid (OBE) algorithm based on relaxed Chebyshev center (RCC) is proposed and used to fuse gyro array signals. On the basis of the error model of single gyro, the maneuvering fusion model of the array system is established. Because of the uncertainty of the noise statistics, the accuracy of the traditional fusion method is reduced. The set-membership estimation theory with unknown but bounded disturbances is introduced and the OBE algorithm is used to achieve the robust estimation of the angular rate. In the OBE algorithm, the ellipsoid geometry center is often used as the point estimate of the true value, but it is not optimal theoretically. The Chebyshev center of the feasible set has many excellent features. Meanwhile, considering that it is very difficult to solve the exact Chebyshev center, the relaxed Chebyshev center is used as a substitute for the point estimate of the true angular rate. Then an OBE update process with RCC as output is designed and a novel parameter optimization criterion is proposed. The verification experiment is performed by using a gyro array composed by six gyroscopes. The experimental results show that the estimation fusion method based on the proposed algorithm can obtain the angle rate guaranteed boundary and further improve the MEMS gyroscope accuracy.

Key words: micro-electro-mechanical system (MEMS) gyro, gyro array, optimal bounding ellipsoid (OBE) algorithm, data fusion, Chebyshev center

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发