BDS/GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization
-
摘要:
全球卫星导航系统(GNSS)接收机在接收信号的过程中会受到诸如建筑物遮挡、信号干扰等因素的影响,无法得到全部可见星。为减轻多星座组合接收机的处理负担,研究利用部分可见卫星进行定位的快速选星算法,提出了一种基于混沌粒子群优化(CPSO)的北斗/GPS组合导航选星算法。首先,对当前历元时刻可见卫星进行连续编码,按照选星数目分组,每个分组视为一个粒子。然后,通过混沌映射初始化粒子种群,选取几何精度因子(GDOP)作为评价粒子优劣的适应度函数;粒子通过粒子群优化算法的速度-位移模型更新自身位置,逐渐趋近空间卫星几何分布较好的卫星组合全局最优解。最后,采集北斗/GPS实际数据对选星算法进行仿真验证和性能比较,结果表明,所提算法在选星颗数多于5颗时,单次选星耗时为遍历法选星的37.5%,选星结果的几何精度因子计算误差在0~0.6之间。该算法可适用于北斗/GPS组合导航定位不同选星颗数的情况。
-
关键词:
- 北斗/GPS组合导航 /
- 选星 /
- 混沌粒子群优化(CPSO) /
- 几何精度因子(GDOP) /
- 适应度函数
Abstract:In the process of signal receiving, global navigation satellite system (GNSS) receiver will be affected by factors such as building blockages and signal interference and will not be able to obtain all the visible satellites; moreover, in order to reduce the processing burden of multi-constellation receivers, the fast satellite selection algorithm using partial visible satellites to achieve positioning solution is investigated, and the BDS/GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization (CPSO) is proposed. First, the visible satellites are continuously numbered and randomly divided into groups. Each group is regarded as a particle. Then, chaotic maps are used to select several groups from all grouping spaces to form initial population. The geometric dilution of precision (GDOP) is chosen as fitness function to evaluate the particle's quality. In addition, the particle's position is updated by the velocity-displacement model of the PSO algorithm, and it gradually approaches the global optimal solution of the satellite combination with better geometric distribution of the space satellite. Finally, using real navigation data, the algorithm is verified by simulation experiments. The results demonstrate that when the number of selected satellite is more than 5, the time that the proposed algorithm takes to select satellite once is 37.5% of the time that the traversing algorithm takes, and the GDOP error of the selected satellites is between 0 and 0.6. Moreover, the proposed algorithm can be applied to the case of different numbers of selected satellite in BDS/GPS integrated navigation.
-
表 1 三种选星算法性能对比
Table 1. Performance comparison of three satellite selection algorithms
选星算法 单次耗时/s GDOP 选星结果 遍历法 4.074 824 2.251 038 92127373839 PSO 1.665 020 2.347 418 92127373842 CPSO 1.435 994 2.333 044 92127333837 -
[1] 张军.空地协同的空域监视新技术[M].北京:航空工业出版社, 2011:36-38.ZHANG J.Air-ground collaborative airspace surveillance[M].Beijing:Aviation Industry Press, 2011:36-38(in Chinese). [2] 王尔申, 杨福霞, 庞涛, 等.BDS/GPS组合导航接收机自主完好性监测算法[J].北京航空航天大学学报, 2018, 44(4):684-690.WANG E S, YANG F X, PANG T, et al.BDS/GPS combined navigation receiver autonomous integrity monitoring algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):684-690(in Chinese). [3] ZHANG M, ZHANG J.A fast satellite selection algorithm:Beyond four satellites[J].IEEE Journal of Selected Topics in Signal Processing, 2009, 3(5):740-747. doi: 10.1109/JSTSP.2009.2028381 [4] SWASZEK P F, HARTNETT R J, SEALS K C, et al.Multi-constellation GNSS: New bounds on DOP and a related satellite selection process[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2016).Washington, D.C.: INST Navigation, 2016: 228-235. [5] 丛丽, AHMED I A, 谈展中.卫星导航几何因子的分析和仿真[J].电子学报, 2006, 34(12):2204-2208. doi: 10.3321/j.issn:0372-2112.2006.12.017CONG L, AHMED I A, TAN Z Z.Analysis and simulation of the GDOP of satellite navigation[J].Acta Electronica Sinica, 2006, 34(12):2204-2208(in Chinese). doi: 10.3321/j.issn:0372-2112.2006.12.017 [6] 陈灿辉, 张晓林.一种新的卫星导航系统快速选星方法[J].电子学报, 2010, 38(12):2887-2891.CHEN C H, ZHANG X L.A fast satellite selection approach for satellite navigation system[J].Acta Electronica Sinica, 2010, 38(12):2887-2891(in Chinese). [7] PHATAK M S.Recursive method for optimum GPS satellite selection[J].IEEE Transactions on Aerospace & Electronic Systems, 2001, 37(2):751-754. [8] MOSAVI M R, DIVBAND M.Calculation of geometric dilution of precision using adaptive filtering technique based on evolutionary algorithms[C]//International Conference on Electrical and Control Engineering.Piscataway, NJ: IEEE Press, 2010: 4842-4845. [9] 宋丹, 许承东, 胡春生, 等.基于遗传算法的多星座选星方法[J].宇航学报, 2015, 36(3):300-308. doi: 10.3873/j.issn.1000-1328.2015.03.008SONG D, XU C D, HU C S, et al.Satellite selection with genetic algorithm under multi-constellation[J].Journal of Astronautics, 2015, 36(3):300-308(in Chinese). doi: 10.3873/j.issn.1000-1328.2015.03.008 [10] 霍航宇, 张晓林.组合卫星导航系统的快速选星方法[J].北京航空航天大学学报, 2015, 41(2):273-282.HUO H Y, ZHANG X L.Fast satellite selection method for integrated navigation systems[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):273-282(in Chinese). [11] 徐小钧, 马利华, 艾国祥.基于多目标遗传算法的多星座选星方法[J].上海交通大学学报, 2017, 51(12):1520-1528.XU X J, MA L H, AI G X.Satellite selection with multi-objective genetic algorithm for multi-GNSS constellations[J].Journal of Shanghai Jiao Tong University, 2017, 51(12):1520-1528(in Chinese). [12] EBERHART R C, SHI Y H.Particle swarm optimization: Developments, applications and resources[C]//Proceedings of the 2001 Congress on Evolutionary Computation.Piscataway, NJ: IEEE Press, 2002: 81-86. [13] EBERHART R C, KENNEDY J.A new optimizer using Particle swarm theory[C]//Proceeding of the 6th International Symposium on Micro Machine and Human Science.Piscataway, NJ: IEEE Press, 1995: 39-43. [14] SHI Y H, EBERHAR R.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998: 69-73. [15] 胥小波, 郑康锋, 李丹, 等.新的混沌粒子群优化算法[J].通信学报, 2012, 33(1):24-30. doi: 10.3969/j.issn.1000-436X.2012.01.004XU X B, ZHENG K F, LI D, et al.New chaos-particle swarm optimization algorithm[J].Journal on Communications, 2012, 33(1):24-30(in Chinese). doi: 10.3969/j.issn.1000-436X.2012.01.004 [16] TIAN D P, SHI Z Z.MPSO:Modified particle swarm optimization and its applications[J].Swarm & Evolutionary Computation, 2018, 41:49-68. 期刊类型引用(24)
1. 张灿,李群,伦伟成,何永明,郭冬. 无人机集群混合合作定位高效节点筛选算法. 国防科技大学学报. 2025(01): 198-206 . 百度学术
2. 童亮,杨婕,甘旭升,沈堤,杨文达,陈达雄. 基于改进混沌蚁群算法的多机冲突解脱仿真研究. 系统仿真学报. 2025(01): 155-166 . 百度学术
3. 薛文,贾张敏,郭雯,张勤昊,房彦龙. 面向导航卫星失效的低轨星座选星方法. 天地一体化信息网络. 2025(01): 8-15 . 百度学术
4. 陈远,张焕彬,黄林超,吉丽娅,郑莉. 基于北斗卫星定位的电力线路异常位移检测研究. 自动化技术与应用. 2024(03): 78-81+147 . 百度学术
5. 甘宇婷,陈健,赵兴旺,刘超. 一种基于改进免疫算法的GNSS快速选星方法. 大地测量与地球动力学. 2024(05): 456-460+467 . 百度学术
6. 汪鹏飞,刘超,张开坤. GNSS相对定位的多目标优化快速选星方法. 九江学院学报(自然科学版). 2024(01): 46-50+90 . 百度学术
7. 毛清华,王迎港,牛晓辉. 基于反吸引速度更新机制的改进蜉蝣算法. 北京航空航天大学学报. 2024(06): 1770-1783 . 本站查看
8. 石俊鹏,李克昭. 利用GDOP减值估计的GNSS多系统快速选星算法. 计算机仿真. 2024(09): 361-367 . 百度学术
9. 赵巍巍,段理智,李秀易,简旭红. 基于PSO的SURF IA选星优化研究. 无线电工程. 2023(02): 471-477 . 百度学术
10. 朱娟娟,段奕琳,闫群民,李召. 基于BAS-IMOPSO算法的风电系统储能优化配置. 电力工程技术. 2023(02): 180-187 . 百度学术
11. 余德荧,李厚朴,纪兵,边少锋. 基于灰狼优化算法的快速选星方法. 系统工程与电子技术. 2023(05): 1489-1495 . 百度学术
12. 李幸芳,赵世海. 基于混沌粒子群自抗扰控制的轧染机张力控制. 现代纺织技术. 2023(06): 207-215 . 百度学术
13. 石涛,庄学彬,林子健,曾小慧. 基于并行遗传算法的高轨卫星导航选星方法. 北京航空航天大学学报. 2023(12): 3528-3536 . 本站查看
14. 薛军帅,张迪,黄勇,杨凯栋. 一种综合射频系统频谱调度决策算法. 科学技术创新. 2022(11): 185-188 . 百度学术
15. 杨静雯,李涛,杨欣,费树岷. 基于短暂丢失参考信号预测的无人直升机轨迹跟踪控制. 南京航空航天大学学报. 2022(06): 1030-1039 . 百度学术
16. 王尔申,孙彩苗,黄煜峰,李轩,别玉霞,曲萍萍. 改进粒子群优化的卫星导航选星算法. 北京航空航天大学学报. 2021(01): 1-6 . 本站查看
17. 吴有龙,杨忠,陈维娜,姚文进,陈闯,陈帅. 北斗单系统及多GNSS系统组合全球卫星可用性分析. 弹箭与制导学报. 2021(01): 18-23 . 百度学术
18. 孙凤山,范孟豹,曹丙花,叶波,刘林. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型. 仪器仪表学报. 2021(04): 92-101 . 百度学术
19. 邱明,严勇杰,孙蕊,张文宇. 基于帝国竞争优化的双目标综合决策选星算法. 北京航空航天大学学报. 2021(08): 1646-1655 . 本站查看
20. 王海珍,廉佐政,谷文成,崔志青. 基于ZigBee的智能家居系统安全通信研究. 电子测量技术. 2021(18): 78-84 . 百度学术
21. 莫树培,唐琎,李国良,陈明,金礼模,周龙龙,朱超,赵大磊. 混沌粒子群优化神经网络的井下人员无线定位方法研究. 传感技术学报. 2020(03): 456-463 . 百度学术
22. 车咏馨. 选星算法下GNSS兼容接收机自身定位解算仿真. 计算机仿真. 2020(03): 354-358 . 百度学术
23. 何康辉,董朝阳,王青. 一种考虑GPS信号中断的导航滤波算法. 北京航空航天大学学报. 2019(09): 1874-1881 . 本站查看
24. 王尔申,杨迪,王传云,曲萍萍,庞涛,蓝晓宇. PSO选星算法参数分析与改进. 北京航空航天大学学报. 2019(11): 2133-2138 . 本站查看
其他类型引用(25)
-