留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DRO计算及其在地月系中的摄动力研究

吴小婧 曾凌川 巩应奎

周锐. 自适应评判神经网络在微分对策中的应用[J]. 北京航空航天大学学报, 2003, 29(5): 415-418.
引用本文: 吴小婧, 曾凌川, 巩应奎等 . DRO计算及其在地月系中的摄动力研究[J]. 北京航空航天大学学报, 2020, 46(5): 883-892. doi: 10.13700/j.bh.1001-5965.2019.0353
Zhou Rui. Design of Differential Game Controllers Using Adaptive Critic Neural Networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5): 415-418. (in Chinese)
Citation: WU Xiaojing, ZENG Lingchuan, GONG Yingkuiet al. DRO computation and its perturbative force in the Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 883-892. doi: 10.13700/j.bh.1001-5965.2019.0353(in Chinese)

DRO计算及其在地月系中的摄动力研究

doi: 10.13700/j.bh.1001-5965.2019.0353
基金项目: 

国家自然科学基金 91438207

详细信息
    作者简介:

    吴小婧  女, 硕士, 工程师。主要研究方向:卫星导航技术

    曾凌川  男, 硕士, 工程师。主要研究方向:卫星通信网络技术

    巩应奎  男, 博士, 研究员。主要研究方向:计算机仿真技术

    通讯作者:

    巩应奎, E-mail: ykgong@aoe.ac.cn

  • 中图分类号: P173.1;P173.3;P132+.2

DRO computation and its perturbative force in the Earth-Moon system

Funds: 

National Natural Science Foundation of China 91438207

More Information
  • 摘要:

    针对远距逆行轨道(DRO)的航天工程应用问题,研究了DRO的计算方法以及轨道特性,分析了DRO在实际力环境中的主要摄动因素,为DRO的精确建模和标称轨道设计奠定一定的理论基础。首先,利用仿真算例验证流函数法在计算DRO周期轨道族中的有效性。然后,利用该方法,通过改变雅可比常数,延拓计算DRO周期轨道族,获得不同共振比的DRO,仿真结果表明整数共振比的DRO在地月惯性坐标系中的轨迹是封闭的曲线,而共振比非整数的DRO则不封闭。最后,通过轨道外推分析影响DRO稳定性的主要摄动因素,仿真结果表明太阳引力和月球轨道偏心率是影响DRO稳定性的主要摄动因素。在动力学模型中,使用标准星历表示行星的运动状态,当积分时间多于10天时模型误差为km量级,因此在地月系这样大尺度的空间范围内,可以使用星历模型近似的分析DRO在真实力环境中的运动状态,为任务轨道设计提供依据。

     

  • 图 1  地月系的φ*(x)曲线和以点P为初值迭代得到的DRO(C=2.93)

    Figure 1.  φ*(x) curve of the Earth-Moon system and DRO obtained by iteration with point P as initial value(C=2.93)

    图 2  地球DRO(1:3)共振轨道

    Figure 2.  The Earth resonant orbit of DRO(1:3)

    图 3  DRO周期轨道族与雅可比常数C

    Figure 3.  DRO periodic family and Jacobi constant C

    图 4  DRO在地月惯性坐标系中的运动轨迹

    Figure 4.  Motion trajectory of DRO in the Earth-Moon inertial coordinate system

    图 5  摄动力模型下地月拟周期DRO

    Figure 5.  The Earth-Moon quasi-periodic DRO under perturbative force model

    图 6  模型1和模型2在xy坐标及到月球距离的偏差

    Figure 6.  Deviation of x, y coordinate and distance to the Moon between Model 1 and Model 2

    图 7  模型1和模型3在xy坐标及到月球距离的偏差

    Figure 7.  Deviation of x, y coordinate and distance to the Moon between Model 1 and Model 3

    图 8  模型1和模型4在xy坐标及到月球距离的偏差

    Figure 8.  Deviation of x, y coordinate and distance to the Moon between Model 1 and Model 4

    图 9  模型1和模型5在xy坐标及到月球距离的偏差

    Figure 9.  Deviation of x, y coordinate and distance to the Moon between Model 1 and Model 5

    图 10  星历模型和全力模型xy坐标及到月球距离偏差的均方差

    Figure 10.  Mean square error of deviation between ephemeris model and full force model of x, y coordinate and distance to the Moon

    表  1  摄动平均量级

    Table  1.   Average magnitude of perturbation

    加速度源加速度平均量级/(m·s-2)
    月球中心引力1.00×10-3
    地球引力1.33×10-3
    太阳引力5.60×10-6
    太阳光压8.66×10-8
    月球非对称引力1.88×10-10
    金星引力6.63×10-10
    木星引力7.16×10-11
    下载: 导出CSV

    表  2  不同摄动模型轨道外推精度的均方差统计结果

    Table  2.   Statistical results of mean square error of trajectory extrapolation precision for different perturbation models km

    积分时间偏差方向轨道外推精度的均方差
    不考虑月球
    非对称引力
    不考虑木星
    引力和金星引力
    不考虑
    太阳光压
    不考虑
    太阳引力
    前1个月x坐标0.304 90.160 598.6831 597.5
    y坐标0.370 40.191 5170.102 859.2
    到月球距离0.112 20.064 882.7301 705.4
    前2个月x坐标0.625 20.286 1168.151 696.5
    y坐标0.899 30.413 6295.723 161.1
    到月球距离0.239 60.122 6161.871 792.0
    前3个月x坐标0.902 30.374 4334.182 448.4
    y坐标1.183 30.499 9513.365 126.9
    到月球距离0.321 40.154 6254.592 784.8
    下载: 导出CSV
  • [1] HENON M.Numerical exploration of the restricted problem.V.Hill's case: Periodic orbits and their stability[J].Astronomy and Astrophysics, 1969, 1: 223-238. doi: 10.1023/A:1022518422926
    [2] 钱霙婧.地月空间拟周期轨道上航天器自主导航与轨道保持研究[D].哈尔滨: 哈尔滨工业大学, 2013.

    QIAN Y J.Research on autonomous navigation and stationkeeping for quasi-periodic orbit in the Earth-Moon system[D].Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [3] SZEBEHELY V. Theory of orbits:The restricted problem of three bodies[M].New York:Academic Press, 1967:381-442.
    [4] HOU X Y, LIU L.On quasi-periodic motions around the triangular libration points of the real Earth-Moon system[J].Celestial Mechanics and Dynamics Astronomy, 2010, 108:301-313. doi: 10.1007/s10569-010-9305-3
    [5] HOU X Y, LIU L.On quasi-periodic motions around the collinear libration points of the real Earth-Moon system[J].Celestial Mechanics and Dynamics Astronomy, 2011, 110:71-98. doi: 10.1007/s10569-011-9340-8
    [6] BEZROUK C J, PARKER J.Long duration stability of distant retrograde orbits: AIAA-2014-4424[R].Reston: AIAA, 2014.
    [7] TURNER G.Results of long-duration simulation of distant retrograde orbits[J].Aerospace, 2016, 3(4):37. doi: 10.3390/aerospace3040037
    [8] LAM T, WHIFFEN G J.Exploration of distant retrograde orbits around Europa[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting.San Diego: AAS Publications Office, 2005: AAS05-110.
    [9] MAZANEK D D, MERRILL R G, BROPHY J R, et al.Asteroid redirect mission concept:A bold approach for utilizing space resources[J].Acta Astronautica, 2015, 117:163-171. doi: 10.1016/j.actaastro.2015.06.018
    [10] STRANGE N, DAMON L, MCELRATH T, et al.Overview of mission design for NASA asteroid redirect robotic mission concept[C]//33rd International Electric Propulsion Conference, 2013: 6-10.
    [11] BEZROUK C, PARKER J S.Ballistic capture into distant retrograde orbits from interplanetary space[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting.San Diego: AAS Publications Office, 2015: AAS15-302.
    [12] BROPHY J R, FRIEDMAN L, CULICK F, et al.Asteroid retrieval feasibility study[C]//Proceedings of 2012 IEEE Aerospace Conference.Piscataway: IEEE Press, 2012: 1-16.
    [13] OCAMPO C A, ROSBOROUGH G W.Transfer trajectories for distant retrograde orbiters of the Earth[C]//Proceedings of the 3rd Annual Spaceflight Mechanics Meeting.Washington, D.C.: NASA, 1993: 1177-1200.
    [14] DEMEYER J, GURFIL P.Transfer to distant retrograde orbits using manifold theory[J].Journal of Guidance, Control, and Dynamics, 2007, 30(5):1261-1267. doi: 10.2514/1.24960
    [15] SCOTT C J, SPENCER D B.Calculating transfer families to periodic distant retrograde orbits using differential correction[J].Journal of Guidance, Control, and Dynamics, 2010, 33(5):1592-1605. doi: 10.2514/1.47791
    [16] STRAMACCHIA M, COLOMBO C, BERNELLI Z F.Distant retrograde orbits for space-based near Earth objects detection[J].Advances in Space Research, 2016, 58(6):967-988. doi: 10.1016/j.asr.2016.05.053
    [17] XU M, XU S J.Exploration of distant retrograde orbits around Moon[J].Acta Astronautica, 2009, 65(5-6):853-860. doi: 10.1016/j.actaastro.2009.03.026
    [18] MURAKAMI N, YAMANAKA K.Trajectory design for rendezvous in lunar distant retrograde orbit[C]//Proceedings of 2015 IEEE Aerospace Conference.Piscataway: IEEE Press, 2015: 1-13.
    [19] CONTE D, CARLO M D, HO K, et al.Earth-Mars transfers through Moon distant retrograde orbits[J].Acta Astronautica, 2018, 143:372-379. doi: 10.1016/j.actaastro.2017.12.007
    [20] LARA M.Nonlinear librations of distant retrograde orbits:A perturbative approach-The Hill problem case[J].Nonlinear Dynamics, 2018, 93(4):2019-2038. doi: 10.1007%2Fs11071-018-4304-0
    [21] LARA M.Design of distant retrograde orbits based on a higher order analytical solutiont[C]//Proceedings of the International Astronautical Congress (IAC).Bremen: International Astronautical Federation(IAF), 2018: 562-578.
    [22] BEZROUK C, PARKER J S.Long term evolution of distant retrograde orbits in the Earth-Moon system[J].Astrophysics and Space Science, 2017, 362:176. doi: 10.1007/s10509-017-3158-0
    [23] 李明涛.共线平动点任务节能轨道设计与优化[D].北京: 中国科学院空间科学与应用研究中心, 2010.

    LI M T.Low energy trajectory design and optimization for collinear libration points missions[D].Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2010(in Chinese).
    [24] DICHMANN D J, LEBOIS R, CARRICO J P.Dynamics of orbits near 3: 1 resonance in the Earth-Moon system[J].The Journal of the Astronautical Sciences, 2013, 60(1):51-86. doi: 10.1007/s40295-014-0009-x
    [25] ANATOLE K, BORIS H.Introduction to the modern theory of dynamical systems[M].Cambridge:Cambridge University, 1996:451-488.
    [26] CHRISTIAN B, LORENZO J D, MARELO V.Dynamics beyond uniform hyperbolicity:A global geometric and probabilistic perspective[M].Berlin:Springer, 2005:13-24.
  • 期刊类型引用(7)

    1. 张晨. 基于数值延拓的日月综合借力DRO入轨策略. 北京航空航天大学学报. 2024(04): 1176-1186 . 本站查看
    2. 黄逸丹,黄勇,樊敏,李培佳. 基于地基测量数据的月球DRO轨道定轨精度分析. 深空探测学报(中英文). 2024(04): 405-413 . 百度学术
    3. 王波,薛璐瑶,彭玉明,段晓闻,张嵬,谢攀,陆希. 日地DRO近地小行星资源勘探普查任务轨道设计与监测效能分析. 上海航天(中英文). 2024(S1): 253-260 . 百度学术
    4. 刘佳,宋叶志,黄乘利,胡小工,谭龙玉. 地月DRO星载光学测量近地小行星轨道确定. 天文学报. 2023(06): 83-100 . 百度学术
    5. 陈天冀,周晚萌,和星吉,彭祺擘,徐明,吕纪远. 考虑环月交会约束的地月转移轨道设计. 宇航学报. 2023(12): 1830-1838 . 百度学术
    6. 陈冠华,杨驰航,张晨,张皓. 地月空间的远距离逆行轨道族及其分岔研究. 北京航空航天大学学报. 2022(12): 2576-2588 . 本站查看
    7. 刘文芳,胡诗杨,刘福窑. 圆型限制性三体问题的动力学特征. 上海工程技术大学学报. 2021(03): 272-280 . 百度学术

    其他类型引用(3)

  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2481
  • HTML全文浏览量:  122
  • PDF下载量:  360
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-07-03
  • 录用日期:  2019-10-11
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答