留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向狭小空间的起落架收放轨迹智能设计方法

朱林昊 邹泽铧 印寅 刘相阳 蔡新之

朱林昊, 邹泽铧, 印寅, 等 . 面向狭小空间的起落架收放轨迹智能设计方法[J]. 北京航空航天大学学报, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440
引用本文: 朱林昊, 邹泽铧, 印寅, 等 . 面向狭小空间的起落架收放轨迹智能设计方法[J]. 北京航空航天大学学报, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440
ZHU Linhao, ZOU Zehua, YIN Yin, et al. Intelligent design method of landing gear retraction and extension trajectory for narrow space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440(in Chinese)
Citation: ZHU Linhao, ZOU Zehua, YIN Yin, et al. Intelligent design method of landing gear retraction and extension trajectory for narrow space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440(in Chinese)

面向狭小空间的起落架收放轨迹智能设计方法

doi: 10.13700/j.bh.1001-5965.2020.0440
基金项目: 

国家自然科学基金 51805249

江苏省自然科学基金 BK20180436

中央高校基本科研业务费专项资金 NF2018001

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    印寅, E-mail: yinyin@nuaa.edu.cn

  • 中图分类号: V226

Intelligent design method of landing gear retraction and extension trajectory for narrow space

Funds: 

National Natural Science Foundation of China 51805249

Natural Science Foundation of Jiangsu Province BK20180436

the Fundamental Research Funds for the Central Universities NF2018001

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    扁平化气动外形是高超声速飞行器获得较高升阻比的优先布局,但该外形严重约束了起落架的收藏空间,常规机构很难满足要求,只能采用复杂机构的三维运动实现起落架的窄空间收放。然而,当前主流的计算机辅助设计迭代试凑法在解决空间机构设计问题方面非常依赖工程经验,耗时耗力且很难得到最优结果。为解决这一问题,创新性地提出基于智能优化算法的起落架复杂机构自主设计方法。首先,分析并建立起落架收放机构的运动学理论模型;然后,建立起落架结构间距离描述及碰撞检测模型,并运用深度神经网络自主设计起落架收放机构的最优运动轨迹;最后,以某狭窄舱段的起落架收放策略设计为例,应用该设计方法进行设计。结果表明:所提设计方法可以快速得到最优的起落架收放机构设计方案,可用于指导高超声速飞行器起落架收放机构的设计。

     

  • 图 1  起落架的收放过程示意图

    Figure 1.  Schematic diagram of landing gear retraction and extension process

    图 2  起落架运动过程中产生的扫掠体示意图

    Figure 2.  Schematic diagram of swept body generated during landing gear movement

    图 3  坐标与位置向量示意图

    Figure 3.  Schematic diagram of coordinate and position vector

    图 4  转轴分布平面

    Figure 4.  Shaft distribution plan

    图 5  深度图方法

    Figure 5.  Depth map method

    图 6  点云方法

    Figure 6.  Point cloud method

    图 7  体素方法

    Figure 7.  Voxel method

    图 8  网格方法

    Figure 8.  Mesh method

    图 9  可能解构成的区域

    Figure 9.  Regions of possible solutions

    图 10  机舱舱段模型

    Figure 10.  Cabin model

    图 11  起落架模型

    Figure 11.  Landing gear model

    图 12  收放位置示意图

    Figure 12.  Schematic diagram of retraction and extension position

    图 13  低精度的舱段划分

    Figure 13.  Low-precision cabin division

    图 14  高精度的舱段划分

    Figure 14.  High-precision cabin division

    图 15  低精度的起落架划分

    Figure 15.  Low-precision landing gear division

    图 16  高精度起落架划分

    Figure 16.  High-precision landing gear division

    图 17  回收路径的最短距离与参数θ的关系

    Figure 17.  Relationship between the shortest distance of retraction path and parameter θ

    表  1  应用不同的划分方式得到的结果

    Table  1.   Results by different partition methods

    起落架精度 舱段精度 最优参数/(°) 计算时间/s 最短距离/mm
    高精度 高精度 231.0 1 666.7 120.1
    低精度 低精度 227.0 232.9 128.6
    高精度 低精度 230.0 1 050.6 146.7
    低精度 高精度 226.0 354.6 99.8
    下载: 导出CSV

    表  2  选取不同优化参数得到的结果

    Table  2.   Results by selecting different optimization parameters

    学习率 θθ0/(°) φφ0/(°) 最短距离/mm
    0 0 0 128.6
    0.05 0.119 661 -0.012 962 130.082 994
    0.1 0.238 078 -0.154 524 132.254 419
    0.2 0.323 544 -0.063 298 132.072 357
    下载: 导出CSV
  • [1] 高泽迥, 黄振威. 飞机设计手册第14分册: 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002: 19-37.

    GAO Z J, HUANG Z W. Aircraft design manual 14th volume: Takeoff and landing system design[M]. Beijing: Aviation Industry Press, 2002: 19-37(in Chinese).
    [2] 聂宏, 魏小辉. 飞机起落架动力学设计与分析[M]. 西安: 西北工业大学出版社, 2013: 1-18.

    NIE H, WEI X H. Dynamic design and analysis of aircraft landing gear[M]. Xi'an: Northwestern Polytechnical University Press, 2013: 1-18(in Chinese).
    [3] CHAI S T, MASON W H. Landing gear integration in aircraft conceptual design[C]//6th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1996: 525-540.
    [4] LIU H. Application of high-speed solenoid valve to the semi-active control of landing gear[J]. Chinese Journal of Aeronautics, 2008, 21(3): 232-240. doi: 10.1016/S1000-9361(08)60030-8
    [5] KHAPANE P D. Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J]. Aerospace Science and Technology, 2003, 7(8): 611-619. doi: 10.1016/S1270-9638(03)00066-X
    [6] 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7): 1776-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm

    FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1776-1786(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm
    [7] VIOLA N, FUSARO R, VERCELLA V, et al. Technology roadmapping strategy, TRIS: Methodology and tool for technology roadmaps for hypersonic and re-entry space transportation systems[J]. Acta Astronautica, 2020, 170: 609-622. doi: 10.1016/j.actaastro.2020.01.037
    [8] 张速成, 魏省三, 张鸣, 等. 起落架收放气动载荷研究[J]. 航空学报, 1987, 8(12): 572-577. doi: 10.3321/j.issn:1000-6893.1987.12.003

    ZHANG S C, WEI S S, ZHANG M, et al. Study of retracting or lowering aerodynamic loads on landing gear[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12): 572-577(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.12.003
    [9] 凌晓琳, 张启先. 飞机起落架收放及转轮复杂空间机构的位置综合和碰撞检测[J]. 北京航空学院学报, 1982(2): 149-165. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK198202010.htm

    LING X L, ZHANG Q X. Kinematic synthesis and collision detection of a complex spatial mechanism of an airplane landing gear with rotable wheel orientation[J]. Journal of Beijing Institute of Aeronautics and astronautics, 1982 (2): 149-165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK198202010.htm
    [10] 杨国柱, 梁跃进. 起落架收放机构的交互式计算机辅助设计[J]. 航空学报, 1987, 8(12): 563-571. doi: 10.3321/j.issn:1000-6893.1987.12.002

    YANG G Z, LIANG Y J. Design analysis and interactive computer aided edsign of the retraction mechanism of main landing gear with rotatable wheel plane [J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12): 563-571(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.12.002
    [11] 周佳新. 起落架空间定位的图解法研究[J]. 辽宁师专学报(自然科学版), 2003, 5(4): 17-23. doi: 10.3969/j.issn.1008-5688.2003.04.010

    ZHOU J X. Graphic method for landing gear positioning [J]. Journal of Liaoning Teachers College (Natural Science Edition), 2003, 5(4): 17-23(in Chinese). doi: 10.3969/j.issn.1008-5688.2003.04.010
    [12] 杨国柱. 现代高性能飞机可收放起落架主要参数的确定[J]. 航空学报, 1987, 8(10): 459-466. doi: 10.3321/j.issn:1000-6893.1987.10.002

    YANG G Z. Determination of main pameters of a retractable landing gear for modern high performance aircrafts [J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(10): 459-466(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.10.002
    [13] 姜礼杰, 陈进, 王良诣, 等. 肢体协调运动康复机器人的机构设计与实验[J]. 自动化学报, 2016, 42(12): 1808-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201612004.htm

    JIANG L J, CHEN J, WANG L Y, et al. Mechanism design and experiment of rehabilitation training robot for coordinated movement of upper and lower limbs[J]. Acta Automatica Sinica, 2016, 42(12): 1808-1818(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201612004.htm
    [14] 于俊虎. 带有转轮的空间转轴起落架理论图设计原理[J]. 航空学报, 1990, 11(6): 299-303. doi: 10.3321/j.issn:1000-6893.1990.06.014

    YU J H. Determination of geometrical parameters of the space pivot axis for a retractable landing gear with turnable wheel[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(6): 299-303(in Chinese). doi: 10.3321/j.issn:1000-6893.1990.06.014
    [15] 张启先. 关于起落架收放中转轴及转动的确定[J]. 航空学报, 1984, 5(2): 157-162. doi: 10.3321/j.issn:1000-6893.1984.02.009

    ZHANG Q X. Determination of the axis and the angle of rotation for a retractable landing gear[J]. Acta Aeronautica et Astronautica Sinica, 1984, 5(2): 157-162(in Chinese). doi: 10.3321/j.issn:1000-6893.1984.02.009
    [16] 张力, 阮江军, 黄道春, 等. 双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J]. 电工技术学报, 2018, 33(2): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201802005.htm

    ZHANG L, RUAN J J, HUANG D C, et al. Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 255-264(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201802005.htm
    [17] YUE S, NIE H, ZHANG M, et al. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule[J]. Acta Astronautica, 2018, 147: 9-26. doi: 10.1016/j.actaastro.2018.02.043
    [18] ZHANG W, ZHANG Z, ZHU Q D, et al. Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J]. Chinese Journal of Aeronautics, 2009, 22(4): 371-379. doi: 10.1016/S1000-9361(08)60113-2
    [19] YIN Y, NIE H, NI H J, et al. Reliability analysis of landing gear retraction system influenced by multifactors[J]. Journal of Aircraft, 2016, 53(3): 713-724. doi: 10.2514/1.C033333
    [20] YIN Y, NIE H, WEI X H, et al. Fault analysis and solution of an airplane nose landing gear's emergency lowering[J]. Journal of Aircraft, 2016, 53(4): 1022-1032. doi: 10.2514/1.C032351
    [21] YIN Y, NEILD S A, JIANG J Z, et al. Optimization of a main landing gear locking mechanism using bifurcation analysis[J]. Journal of Aircraft, 2017, 54(6): 2126-2139. doi: 10.2514/1.C034228
    [22] 印寅, 聂宏, 魏小辉, 等. 多因素影响下的起落架收放系统性能分析[J]. 北京航空航天大学学报, 2015, 41(5): 953-960. doi: 10.13700/j.bh.1001-5965.2014.0380

    YIN Y, NIE H, WEI X H, et al. Retraction system performance analysis of landing gear with the influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 953-960(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0380
    [23] 印寅, 聂宏, 魏小辉, 等. 飞机起落架收放系统动力学分析与试验[J]. 振动、测试与诊断, 2016, 36(4): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201604005.htm

    YIN Y, NIE H, WEI X H, et al. Dynamics analysis and testing of an aircraft's landing gear retraction system[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 641-646(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201604005.htm
    [24] SUTTON R. Two problems with backpropagation and other steepest-descent learning procedures for networks[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society, 1986: 823-832.
    [25] NESTEROV Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Doklady Akademii Nauk SSSR, 1983, 269(3): 543-547. http://www.researchgate.net/publication/257291640_A_method_of_solving_a_convex_programming_problem_with_convergence_rate_O1k2
    [26] DEAN J, CORRADO G, MONGA R, et al. Large scale distributed deep networks[C]//NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1: 1223-1231.
    [27] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.magicbroom.info%2FPapers%2FDuchiHaSi10.pdf
    [28] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37: 448-456.
    [29] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-15.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  177
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答