[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2009, Vol. 35 Issue (12) :1434-1437    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
������, ������, ̸չ��*
�������պ����ѧ ������Ϣ����ѧԺ,���� 100191
Weight allocation of combination prediction based on sequence relative nearness degree
Lü Yongle, Lang Rongling, Tan Zhanzhong*
School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��ʱ�����е����Ԥ��Ȩֵ����������,Ϊ�˷���ͳ�ľ���������Ȩ����Ȩ�����Ż�����֮����,��Ԥ��ֵ�����������������м�������Գ���,����·����ۺϺ�����һ����ģ�͵�������,���ݴ˷���Ȩֵ.��ϸ�������������������(SRND,Sequence Relative Nearness Degree)����֮��ص�"�������ƹ�����"��"�߶�������"�ĸ���,���������SRND��Ȩֵ���䷽��.��SRNDȨֵ���䷽��Ӧ���ں��շ����������¶�ԣ�Ȳ���ʱ�����е������Իع黬��ƽ��ģ�͡�����ϵ���Իع�ģ�ͺ;������������Ԥ��,��Ч�������Ԥ��׼ȷ��,������ھ���������Ȩ����Ȩ�������������,��������ԶС�����Ż�����.
Email Alert
�ؼ����� ʱ�����з���   ���Ԥ��   ��ģ   ����     
Abstract�� Aiming at the weight allocation problems of combination prediction for a time series, a new method was proposed to evaluate the applicability of the employed models and allocate weights, based on the "nearness" between the test sequence and the corresponding prediction value sequence, which overcame the shortages of existing methods such as mean square error reciprocal weight (1/MSE), entropy weight and optimization weight. The definitions of sequence relative nearness degree (SRND), related sequence trend association and scale interval entropy were given and well discussed, as well as the weight allocation expressions based on SRND. By the example which combined the autoregressive moving average model, functional-coefficient autoregressive model and radial basis function prediction networks in the prediction analysis for the takeoff exhaust gas temperature margin time series, the conclusion is drawn that the prediction accuracy can be effectively improved with the proposed method, compared to 1/MSE and entropy weight methods, while the calculation mount is far lower than optimization weight method.
Keywords�� time series analysis   combination prediction   model buildings   performance     
Received 2008-11-12;


About author: ������(1981-),��,����������,��ʿ��,lv_yongle@ee.buaa.edu.cn.
������, ������, ̸չ��.����"�������������"�����Ԥ��Ȩֵ����[J]  �������պ����ѧѧ��, 2009,V35(12): 1434-1437
L�� Yongle, Lang Rongling, Tan Zhanzhong.Weight allocation of combination prediction based on sequence relative nearness degree[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2009,V35(12): 1434-1437
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2009/V35/I12/1434
Copyright 2010 by �������պ����ѧѧ��