北京航空航天大学学报 ›› 2007, Vol. 33 ›› Issue (06): 739-742.

• 论文 • 上一篇    下一篇

一种基于关键特征的搜索引擎结果聚类算法

张辉, 谢科, 庞斌, 吴辉   

  1. 北京航空航天大学 开发环境国家重点实验室, 北京 100083
  • 收稿日期:2006-08-23 出版日期:2007-06-30 发布日期:2010-09-17
  • 作者简介:张 辉(1968-),男,浙江磐安人,副教授, hzhang@nlsde.buaa.edu.cn.
  • 基金资助:

    国家科技基础条件平台建设资助项目(2005DKA63901)

Key-feature-based clustering algorithm for search engine results

Zhang Hui, Xie Ke, Pang Bin, Wu Hui   

  1. National Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2006-08-23 Online:2007-06-30 Published:2010-09-17

摘要: 为了解决用户在搜索引擎结果列表中寻找所需信息困难的问题,帮助用户快速有效地定位有价值的Web文档,与向量空间模型方法不同,采用基于关键特征的聚类算法(KFC).首先从搜索引擎返回结果的关键词里选择重要的词作为关键特征,然后通过分析特征间的关系对特征聚类,最后基于特征聚类结果实现文档的聚类.通过对实验结果的测试表明了算法的有效性.

Abstract: To solve the problem that users of web search engines are often forced to sift through the long ordered list of document, a new key-feature clustering (KFC) algorithm was presented to help locate the valuable search results that the users really needed, which was different from VSM. The algorithm firstly extracted some key features from the keywords in the search results. Then the relationships between key features were analyzed and features were clustered. Finally, the documents were clustered based on these clusters of key features. The algorithm was tested and validated by the results of experiments.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发