[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2006, Vol. 32 Issue (03) :258-262    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���ڸĽ���Ⱥ�㷨�ĵͿ�ͻ�������滮
�1, ���廪1, ����1, ����2*
1. �������պ����ѧ ���տ�ѧ�빤��ѧԺ, ���� 100083;
2. ½���о���, ���� 101114
Trajectory planning for low attitude penetration based on improved ant colony algorithm
Li Dong1, Cao Yihua1, Su Yuan1, Feng Ting2*
1. School of Aeronautic Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. Aviation Research Institute, Beijing 101114, China

ժҪ
�����
�������
Download: PDF (1545KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ϊ��֤�Ϳ�ͻ���ijɹ���,�ں����滮ʱ������Ƴ�����С�ı����ָ��ʼ��ɽ��ܵĺ���ΪĿ��ĺ���.��Ⱥ�㷨ACA(Ant Colony Algorithm)��Ϊһ�����͵�ģ������㷨,�ʺ����ں����滮�����ź���������,�����㷨��������ʱ�䳤�������ٶ����������ھֲ����Ž��ȱ��,Ϊ�˿˷��㷨������,����㷨����,�������Ŵ��㷨�б�������ͻӷ�ϵ��������Ӧ����,�Ӷ��γɸĽ���Ⱥ�㷨,����Ͻ����ĺ����滮����ָ��,���õȸ���Ѱ�š�ԭ����Ⱥ�㷨�͸Ľ���Ⱥ�㷨3�ַ����ֱ���к����滮,��ͨ���ȽϺͷ��������ʱ�仨�Ѻͺ�·����,��֤�˸Ľ���Ⱥ�㷨����Ч��.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� �㷨   ����   �滮   �Ϳ�ͻ��   ��Ⱥ�㷨     
Abstract�� To ensure the mission success rate for low attitude penetration, a trajectory with high survivability and acceptable path length must be planned. As a kind of new emulated evolutional algorithm, ant colony algorithm (ACA) is fit for searching the best way in trajectory planning. The algorithm has several shortages including long searching time, slow convergence rate and limiting to local optimal solution easily. In order to overcome these shortcomings and improve its performance, the improved ant colony algorithm was established, and it introduces the mutation in genetic algorithms (GA) and the adaptive adjustment of the volatilization coefficient. With the establishment of the performance index, the results derived from the equiprobable optimization, the original method and the improved one were compared and analyzed in the example. Base on the comparison of the time expenditure and the performance of the flight paths, the effectiveness of the improved ant colony algorithm was proved.
Keywords�� algorithms   trajectories   planning   low attitude penetration   ant colony algorithm     
Received 2004-06-13;
Fund:

���Ҳ�ί����������Ŀ

About author: �� ��(1974-),��,�ӱ���ͤ��,��ʿ��, ld 819@163.com.
���ñ���:   
�, ���廪, ����, ����.���ڸĽ���Ⱥ�㷨�ĵͿ�ͻ�������滮[J]  �������պ����ѧѧ��, 2006,V32(03): 258-262
Li Dong, Cao Yihua, Su Yuan, Feng Ting.Trajectory planning for low attitude penetration based on improved ant colony algorithm[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2006,V32(03): 258-262
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2006/V32/I03/258
Copyright 2010 by �������պ����ѧѧ��