Zhang Zhimin, Li Jinqiu, Guo Yanyanget al. Computational Model of Progressive Failure in Composite Sandwich Structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 565-568. (in Chinese)
Citation: YAO Jingjing, ZHENG Dezhi, MA Kang, et al. Theoretical research on multi-axis maglev low-frequency vibration sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524(in Chinese)

Theoretical research on multi-axis maglev low-frequency vibration sensor

doi: 10.13700/j.bh.1001-5965.2017.0524
Funds:

National Key Scientific Instrument and Equipment Development Project 2014YQ350461

National Key Technology Research and Development Program of China 2014BAF08B01

More Information
  • Corresponding author: ZHENG Dezhi, E-mail:zhengdezhi@buaa.edu.cn
  • Received Date: 11 Aug 2017
  • Accepted Date: 21 Sep 2017
  • Publish Date: 20 Jul 2018
  • A new maglev low-frequency vibration sensor was proposed, which was used for multi-axis measurement of aerospace micro-vibration. It used micro-spring and the hybrid structure with electromagnets and permanent magnets as the supporting element. The axial displacement detection circuit and the photoelectric displacement sensors were used to measure the relative displacement between the maglev mass block and the shell and realize the multi-axis measurement of low-frequency vibration signals. When the sensor was used for dynamic measurement, the maglev mass block could return to the equilibrium position and keep stable levitation under the combined action of electromagnetic attractive force, gravity and spring force. The equivalent bearing stiffness coefficient and the equivalent damping coefficient of the system could be controlled by adjusting the control current of the electromagnetic coil, which can reduce the natural frequency effectively and extend application range of the sensor. Theoretical analyses show that the lower-cut-off frequency of the sensor is 0.6 Hz and it has better low-frequency characteristics. The proposed method provides new thought for designing multi-axis low-frequency vibration sensor.

     

  • [1]
    赵锦春.低频超低频振动计量技术应用分析[J].信息技术与标准化, 2011(5):78-81.

    ZHAO J C.The application prospects of metrology technology of low and super low-frequency vibration measurement[J].Information Technology & Standardization, 2011(5):78-81(in Chinese).
    [2]
    江东, 杨嘉祥.基于磁悬浮效应的三维振动测量[J].仪器仪表学报, 2011, 32(3):557-562.

    JIANG D, YANG J X.Three-dimensional vibration measurement based on magnetic levitation effect[J].Chinese Journal of Scientific Instrument, 2011, 32(3):557-562(in Chinese).
    [3]
    PARASHAR S K, KUMAR A.Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells[J].Archive of Applied Mechanics, 2015, 85(5):641-656. doi: 10.1007/s00419-014-0977-0
    [4]
    YURIN A I, DMITRIEV A V, KRASIVSKAYA M I, et al.Adaptive contactless fiber-optic vibration displacement sensor[J].Measurement Techniques, 2017, 59(11):1146-1150. doi: 10.1007/s11018-017-1106-6
    [5]
    袁新江, 姜洋, 汪磊磊, 等.大型精密测量设备的微振研究[J].电子机械工程, 2012, 28(1):13-16.

    YUAN X J, JIANG Y, WANG L L, et al.Research on micro-vibration of large-scale precise measurement equipment[J].Electro-Mechanical Engineering, 2012, 28(1):13-16(in Chinese).
    [6]
    樊尚春.传感器技术及应用[M].3版.北京:北京航空航天大学出版社, 2016:308-314.

    FAN S C.Sensor technology and application[M].3rd ed.Beijing:Beihang University Press, 2016:308-314(in Chinese).
    [7]
    孙承文. 基于DVD光读取头的超低频振动传感器机理的研究[D]. 合肥: 合肥工业大学, 2009: 5-8.

    SUN C W. The research on mechanism of ultra-low frequency vibration sensor mechanism based on DVD pickup[D]. Hefei: Hefei University of Technology, 2009: 5-8(in Chinese).
    [8]
    裴雪红. 基于改进RBF神经网络的PID控制[D]. 哈尔滨: 哈尔滨理工大学, 2010: 28-32.

    PEI X H. Improved PID control based on RBF neural network[D]. Harbin: Harbin University of Science and Technology, 2010: 28-32(in Chinese).
    [9]
    陈兴华. 高温超导EMS磁浮系统的鲁棒控制器的研究[D]. 成都: 西南交通大学, 2008: 4-8.

    CHEN X H. Study on robost controller for high-temperature superconductor EMS system[D]. Chengdu: Southwest Jiaotong University, 2008: 4-8(in Chinese).
    [10]
    VENGHI L E, GONZALEZ G N, SERRA F M.Implementation and control of a magnetic levitation system[J].IEEE Latin America Transactions, 2016, 14(6):2651-2656. doi: 10.1109/TLA.2016.7555233
    [11]
    USWARMAN R, CAHYADI A I, WAHYUNGGORO O. Control of a magnetic levitation system using feedback linearization[C]//International Conference on Computer, Control, Informatics and Its Applications. Piscataway, NJ: IEEE Press, 2014: 95-98.
    [12]
    BOONSATIT N, PUKDEBOON C.Adaptive fast terminal sliding mode control of magnetic levitation system[J].Journal of Control Automation & Electrical Systems, 2016, 27(4):1-9.
    [13]
    高志华, 胡业发.磁力轴承刚度阻尼特性研究[J].中国制造业信息化, 2005, 34(2):130-132.

    GAO Z H, HU Y F.Research on characteristic of stiffness and damping for active magnetic bearing[J].Machine Design and Manufacturing Engineering, 2005, 34(2):130-132(in Chinese).
    [14]
    江东, 高颖.磁悬浮效应检振系统设计[J].电机与控制学报, 2008, 12(3):343-347.

    JIANG D, GAO Y.Vibration measuring principle and system based on magnetic levitation effect[J].Electric Machines and Control, 2008, 12(3):343-347(in Chinese).
    [15]
    汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52.

    WANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese).
    [16]
    LI Z, LUN Q Q.Analysis of magnetic field and levitation force characteristics for 3-DOF deflection type PM motors[J].Journal-Chinese Institute of Engineers, 2016, 39(6):1-9.
    [17]
    安建军. 冲击波压力传感器动态灵敏度研究[D]. 太原: 中北大学, 2008: 11-14.

    AN J J. The research of the dynamic sensitivity of the shock wave pressure sensor[D]. Taiyuan: Zhongbei University, 2008: 11-14(in Chinese).
    [18]
    佘天莉. 测振传感器的动态特性补偿研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2006: 17-18.

    SHE T L. The research on dynamic characteristics compensation of vibration sensor[D]. Harbin: Institute of Engineering Mechanics China Seismological Bureau, 2006: 17-18(in Chinese).
    [19]
    KUREK J. Step response identification of inertial model for oscillating system[M]//JANUSZ K. Advanced mechatronics solutions. Berlin: Springer International Publishing, 2016: 51-56.
    [20]
    朱中华. 微压压力传感器的设计与研究[D]. 镇江: 江苏大学, 2008: 28-29.

    ZHU Z H. Design and research of micropressure sensor[D]. Zhenjiang: Jiangsu University, 2008: 28-29(in Chinese).
    [21]
    LANG Z Q, BILLINGS S A.Output frequency characteristics of nonlinear systems[J].International Journal of Control, 2015, 64(6):1049-1067.
    [22]
    TAN N, ATHERTON D P, YVCE A.Computing step and impulse responses of closed loop fractional order time delay control systems using frequency response data[J].International Journal of Dynamics & Control, 2016, 5(1):1-10.
  • Relative Articles

    [1]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [2]WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135.
    [3]WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991.
    [4]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [5]YANG Hai-feng, LI Zhi-gang, TAN Yue-dong, XIAO Peng-hui, KONG Wei. Development of Ejection Seat-Dummy Model and Analysis of Seat Tip-off Stability[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0654
    [6]XIA C F,WANG X L,LI Z,et al. Field balancing method for rotor system of magnetically suspended control and sensing gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3417-3425 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0852.
    [7]CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0708.
    [8]HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0453.
    [9]GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0469.
    [10]LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518
    [11]DUAN Leqiang, LI Lei, WANG Weijie, ZHU Hongye, PANG Weikun, REN Yuan. Dynamics Modeling and Active disturbance rejection control of Magnetically Suspended Universally Stabilized Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0065
    [12]CHENG H J,YANG J F,LIU Z H,et al. Rule-based integrated stability control of multi-axle special vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1794-1805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0569.
    [13]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [14]LI Tian, ZHAO You-qun, XU Tao, SHEN Ya-wei, LIN Fen. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0238
    [15]WANG X L,XU Y F,XUE Y C. Evaluation and optimization of departure flight schedule stability of airport group[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1331-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0462.
    [16]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [17]XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780.
    [18]XING Yufeng, JI Yi, ZHANG Huimin. Advances and challenges in time integration methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288
    [19]YANG Yang, WANG Weijie, WANG Zhou, FAN Yahong, XUE Le. Momentum envelope analysis of magnetically suspended control sensitive gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2061-2069. doi: 10.13700/j.bh.1001-5965.2021.0071
    [20]YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
  • Cited by

    Periodical cited type(3)

    1. 赵芳,张健,孙凤,徐方超,栾博然,刘洋,张晓友. 电火花加工用磁悬浮驱动器控制系统. 沈阳工业大学学报. 2024(01): 82-90 .
    2. 徐程程,徐方超,孙凤,张晓友,金俊杰,栾博然. 电火花加工用磁力驱动器的微定位控制. 西南交通大学学报. 2022(03): 610-617 .
    3. 周振华,黄浩,杜荣华. 基于负刚度结构的低频速度传感器的设计与分析. 传感技术学报. 2020(06): 804-814 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(878) PDF downloads(360) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return