留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机前飞状态旋翼结冰风洞试验研究

黄明其 王亮权 袁红刚 彭先敏 章贵川

黄明其, 王亮权, 袁红刚, 等 . 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703
引用本文: 黄明其, 王亮权, 袁红刚, 等 . 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703
HUANG Mingqi, WANG Liangquan, YUAN Honggang, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703(in Chinese)
Citation: HUANG Mingqi, WANG Liangquan, YUAN Honggang, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703(in Chinese)

直升机前飞状态旋翼结冰风洞试验研究

doi: 10.13700/j.bh.1001-5965.2020.0703
基金项目: 

国家自然科学基金 11902335

中国空气动力研究与发展中心基础和前沿技术研究基金 PJD20180146

详细信息
    通讯作者:

    王亮权, E-mail: wangliangquan@cardc.cn

  • 中图分类号: V211.52

Icing wind tunnel investigation of helicopter rotor model in forward flight state

Funds: 

National Natural Science Foundation of China 11902335

CARDC Fundamental and Frontier Technology Research Fund PJD20180146

More Information
  • 摘要:

    为研究直升机旋翼在不同前飞状态的结冰情况,研制了直升机旋翼模型结冰试验台,在中国空气动力研究与发展中心结冰风洞4.8 m×3.2 m试验段中进行了旋翼结冰风洞试验。以某型直升机2 m直径旋翼缩比模型为试验对象,分析了旋翼转速、初始拉力系数对旋翼结冰的影响。结冰试验过程中保持旋翼操纵恒定,利用天平测量了旋翼拉力和扭矩性能的动态变化,并采用二维冰形切割及三维冰形扫描的方式分别测量了桨叶展向典型剖面的翼型及桨叶的整体结冰形态。试验得到了旋翼结冰关键数据,分析结果表明:旋翼桨叶结冰主要集中在桨叶前缘和下表面,结冰会在降低旋翼升力的同时增大旋翼扭矩和功率;小拉杆杆端轴承的积冰可能造成卡塞,变距拉杆上的积冰可能造成杆端轴承卡塞,从而使旋翼操纵失效。

     

  • 图 1  安装在CARDC结冰风洞中的旋翼试验台

    Figure 1.  Rotor test rig installed in CARDC icing wind tunnel

    图 2  桨叶模型三视图

    Figure 2.  Three-view drawing of rotor blade model

    图 3  桨叶上的积冰情况

    Figure 3.  Ice accretion on rotor blade

    图 4  桨毂及变距机构上的积冰情况

    Figure 4.  Ice accretion on hub and pitch link

    图 5  基准试验状态(Case01)旋翼性能的变化

    Figure 5.  Time history of rotor performance for baseline case (Case01)

    图 6  基准试验状态(Case01)桨叶前缘的积冰特写

    Figure 6.  Close-up view of ice accretion on blade for baseline case (Case01)

    图 7  旋翼转速对旋翼性能的影响

    Figure 7.  Effect of rotational speed on rotor performance

    图 8  旋翼转速对翼型剖面冰形的影响

    Figure 8.  Effect of rotational speed on airfoil ice accretion

    图 9  Case02试验状态桨叶积冰照片

    Figure 9.  Picture of ice accretion on blade for test Case02

    图 10  Case03试验状态桨叶积冰照片

    Figure 10.  Picture of ice accretion on blade for test Case03

    图 11  初始拉力系数对旋翼性能的影响

    Figure 11.  Effect of initial thrust coefficient on rotor performance

    图 12  初始拉力系数对翼型剖面冰形的影响

    Figure 12.  Effect of initial thrust coefficient on airfoil ice accretion

    图 13  Case04试验状态的桨叶积冰扫描结果

    Figure 13.  Scan results of ice accreted on blade for test Case04

    图 14  Case05试验状态的桨叶积冰扫描结果

    Figure 14.  Scan results of ice accreted on blade for test Case05

    图 15  桨叶局部的积冰特写(Case04)

    Figure 15.  Picture of ice accretion on blade for test Case04

    表  1  旋翼结冰试验状态

    Table  1.   Icing conditions for rotor test

    试验编号 来流速度/
    (m·s-1)
    旋翼转速/
    (r·min-1)
    拉力系数
    Case01 37.7 1 800 0.008
    Case02 37.7 1 080 0.008
    Case03 37.7 1 440 0.008
    Case04 37.7 1 800 0.006
    Case05 37.7 1 800 0.010
    下载: 导出CSV
  • [1] CAO Y, CHEN K. Helicopter icing[J]. The Aeronautical Journal, 2010, 114(1152): 83-90. doi: 10.1017/S0001924000003559
    [2] 中华人国共和国交通运输部. 中国民用航空规章第27部正常类旋翼航空器适航规定: CCAR-27-R2[S]. 北京: 中华人民共和国交通运输部, 2017.

    Ministry of Transport of the People's Republic of China. China civil aviation regulation No. 27: Airworthiness regulations for normal rotorcraft: CCAR-27-R2[S]. Beijing: Ministry of Transport of the People's Republic of China, 2017(in Chinese).
    [3] 中华人民共和国交通运输部. 中国民用航空规章第29部运输类旋翼航空器适航规定: CCAR-29-R2[S]. 北京: 中华人民共和国交通运输部, 2017.

    Ministry of Transport of the People's Republic of China. China civil aviation regulation No. 29: Airworthiness regulations for transport rotorcraft: CCAR-29-R2[S]. Beijing: Ministry of Transport of the People's Republic of China, 2017(in Chinese).
    [4] TARQUINI S, ANTONINI C, AMIRFAZLI A, et al. Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J]. Cold Regions Science and Technology, 2014, 100: 50-58. doi: 10.1016/j.coldregions.2013.12.009
    [5] PALACIOS J, WOLFE D, BAILEY M, et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12.
    [6] 常士楠, 刘达经, 袁修干. 直升机旋翼桨叶防/除冰系统防护范围研究[J]. 航空动力学报, 2007, 22(3): 360-364. doi: 10.3969/j.issn.1000-8055.2007.03.005

    CHANG S N, LIU D J, YUAN X G. Research on protected range of the anti-icing/deicing system for helicopter rotor[J]. Journal of Aerospace Power, 2007, 22(3): 360-364(in Chinese). doi: 10.3969/j.issn.1000-8055.2007.03.005
    [7] 洪海华, 刘伟光, 艾剑波, 等. 直升机的防除冰系统[J]. 直升机技术, 2010(1): 52-56. doi: 10.3969/j.issn.1673-1220.2010.01.010

    HONG H H, LIU W G, AI J B, et al. Anti-icing/deicing system of helicopter rotor[J]. Helicopter Technique, 2010(1): 52-56(in Chinese). doi: 10.3969/j.issn.1673-1220.2010.01.010
    [8] SHAW R, RICHTER G. The UH-1H helicopter icing flight test program-An overview[C]//23rd Aerospace Sciences Meeting. Reston: AIAA, 1985: 338.
    [9] 钟国, 曹义华, 赵明. 直升机旋翼积冰的数值模拟[J]. 北京航空航天大学学报, 2012, 38(3): 330-334. https://bhxb.buaa.edu.cn/CN/Y2012/V/I3/330

    ZHONG G, CAO Y H, ZHAO M. Numerical simulation of ice accretion on helicopter rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3): 330-334(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V/I3/330
    [10] KELLY D, HABASHI W G, QUARANTA G, et al. Ice accretion effects on helicopter rotor performance, via multibody and CFD approaches[J]. Journal of Aircraft, 2018, 55(3): 1165-1176. doi: 10.2514/1.C033962
    [11] WANG Z Z, ZHAO N, ZHU C L. Numerical simulation for three-dimensional rotor icing in forward flight[J]. Advances in Mechanical Engineering, 2018, 10(4): 168781401877240. doi: 10.1177/1687814018772404
    [12] CHEN X, ZHAO Q J, BARAKOS G. Numerical analysis of aerodynamic characteristics of iced rotor in forward flight[J]. AIAA Journal, 2018, 57(4): 1523-1537.
    [13] WANG L Q, XU G H, SHI Y J. Rotor airload and acoustics prediction based on CFD/CSD coupling method[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018(2): 343-352.
    [14] 李国知, 曹义华. 旋翼结冰对直升机飞行动力学特性的影响[J]. 航空学报, 2011, 32(2): 187-194.

    LI G Z, CAO Y H. Effect of rotor icing on helicopter flight dynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 187-194(in Chinese).
    [15] CHEN N L, JI H H, CAO G Z, et al. A three-dimensional mathematical model for simulating ice accretion on helicopter rotors[J]. Physics of Fluids, 2018, 30(8): 83602. doi: 10.1063/1.5041896
    [16] FLEMMING R J, HANKS K W, HANKS M L. US army UH-60M helicopter main rotor ice protection system[C]//2007 SAE Aircraft and Engine Icing International Conference, 2007: 1-16.
    [17] HOFF S C, VORST J, FLEMMING R J, et al. Icing certification of Korean utility helicopter KUH-1: NLR-TP-2017-098[R]. Amsterdam: NLR, 2017: 1-18.
    [18] FLEMMING R, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley Climatic Laboratory: AIAA 2004-737[R]. Reston: AIAA, 2004.
    [19] BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. doi: 10.1016/j.paerosci.2005.07.001
    [20] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. doi: 10.1016/S0376-0421(01)00018-5
    [21] 张大林, 陈维建. 飞机机翼表面霜状冰结冰过程的数值模拟[J]. 航空动力学报, 2004, 19(1): 137-141. doi: 10.3969/j.issn.1000-8055.2004.01.025

    ZHANG D L, CHEN W J. Numerical simulation of rime ice accretion process on airfoil[J]. Journal of Aerospace Power, 2004, 19(1): 137-141(in Chinese). doi: 10.3969/j.issn.1000-8055.2004.01.025
    [22] CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. doi: 10.1146/annurev.fluid.35.101101.161217
    [23] 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734.

    GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734(in Chinese).
    [24] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 17-19.

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 17-19(in Chinese).
    [25] FLEMMING R J, LEDNICER D A. Correlation of icing relationships with airfoil and rotorcraft icingdata[J]. Journal of Aircraft, 1986, 23(10): 737-743. doi: 10.2514/3.45374
    [26] MILLER T L, BOND T H. Icing research tunnel test of a model helicopter rotor: NASA-TM-101978[R]. Washington, D.C. : NASA, 1989: 1-12.
    [27] BRITTON R, BOND T, FLEMMING R. An overview of a model rotor icing test in the NASA Lewis icing research tunnel: AIAA-94-0716[R]. Reston: AIAA, 1994.
    [28] 宋建宇, 吴晶峰, 邱长波, 等. 民用涡轴发动机进气系统结冰试验[J]. 航空动力学报, 2020, 35(5): 1089-1098.

    SONG J Y, WU J F, QIU C B, et al. Civil turboshaft engine induction system icing test[J]. Journal of Aerospace Power, 2020, 35(5): 1089-1098(in Chinese).
    [29] 倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53.

    NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53(in Chinese).
    [30] 章贵川, 彭先敏, 车兵辉, 等. 共轴刚性旋翼试验自动配平技术研究[J]. 南京航空航天大学学报, 2019, 51(2): 226-231.

    ZHANG G C, PENG X M, CHE B H, et al. Research on automatic trim technology of coaxial rigid rotor test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 226-231(in Chinese).
    [31] 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520711.

    YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520711(in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  89
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 录用日期:  2021-02-20
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答