留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星不足情况下低成本MEMS-INS/GPS伪松组合导航

李灿 沈强 汪立新 左凯 田颖

李灿,沈强,汪立新,等. 卫星不足情况下低成本MEMS-INS/GPS伪松组合导航[J]. 北京航空航天大学学报,2023,49(4):869-878 doi: 10.13700/j.bh.1001-5965.2021.0131
引用本文: 李灿,沈强,汪立新,等. 卫星不足情况下低成本MEMS-INS/GPS伪松组合导航[J]. 北京航空航天大学学报,2023,49(4):869-878 doi: 10.13700/j.bh.1001-5965.2021.0131
LI C,SHEN Q,WANG L X,et al. Pseudo loosely-integrated navigation of low-cost MEMS-INS/GPS with insufficient observable satellites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):869-878 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0131
Citation: LI C,SHEN Q,WANG L X,et al. Pseudo loosely-integrated navigation of low-cost MEMS-INS/GPS with insufficient observable satellites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):869-878 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0131

卫星不足情况下低成本MEMS-INS/GPS伪松组合导航

doi: 10.13700/j.bh.1001-5965.2021.0131
基金项目: 陕西省自然科学基础研究计划(2020JQ-491);陕西省高效科协青年人才托举计划(20200109)
详细信息
    通讯作者:

    E-mail:shenq110@163.com

  • 中图分类号: V279;TN96

Pseudo loosely-integrated navigation of low-cost MEMS-INS/GPS with insufficient observable satellites

Funds: Natural Science Basic Research Program of Shaanxi (2020JQ-491); Young Elite Scientists Sponsorship Program by University Association for Science and Technology of Shaanxi (20200109)
More Information
  • 摘要:

    为了解决GPS可观测卫星不足情况下低成本微电子机械-惯性导航系统/全球定位系统(MEMS-INS/GPS)组合导航精度维持问题,提出基于灰色模型和自适应卡尔曼滤波的MEMS-INS/GPS伪松组合导航方法。以MEMS-INS/GPS松组合导航模式为框架,建立了伪松组合导航系统的状态空间模型。基于MEMS-INS/GPS的历史观测数据,使用灰色模型对MEMS-INS/GPS观测差值进行预测,称为系统伪观测量。当GPS可观测卫星充分时,使用噪声自适应估计卡尔曼滤波对MEMS-INS/GPS进行松组合导航;当GPS可观测卫星不足时,使用噪声自适应估计卡尔曼滤波依据系统伪观测量,将MEMS-INS/GPS进行伪松组合导航。以车载低成本MEMS-INS/GPS组合导航系统为例进行仿真和实验验证,结果表明:当GPS可观测卫星不足时,传统的MEMS-INS/GPS松组合导航精度迅速下降并发散,而MEMS-INS/GPS伪松组合导航精度与GPS正常工作时的导航精度相差不大,维持了较高精度的导航状态。

     

  • 图 1  MEMS-INS/GPS伪松组合导航

    Figure 1.  MEMS-INS/GPS pseudo loosely-integrated navigation

    图 2  基于灰色模型的GPS伪观测量预测

    Figure 2.  Grey-model based prediction of pseudo observing quantity of GPS

    图 3  载体运行轨迹

    Figure 3.  Path of carrier

    图 4  东向和北向速度差值预测结果

    Figure 4.  Prediction result of difference between eastward and northward speeds

    图 5  3组实验的车辆导航误差

    Figure 5.  Vehicle navigation error of three group experiments

    图 6  实验车装置

    Figure 6.  Device of experimental vehicle

    图 7  实验车轨迹

    Figure 7.  Path of experimental vehicle

    图 8  不同导航方案导航量的变化情况

    Figure 8.  Navigation parameter changes of different navigation schemes

    表  1  灰色模型预测精度等级

    Table  1.   Prediction accuracy grade of grey model

    模型精度等级小误差概率$ p $后验差比值$ C $
    1级(好)$ p \geqslant 0.95 $$ C \leqslant 0.35 $
    2级(合格)$ 0.80 \leqslant p \lt 0.95 $$ 0.35 \lt C \leqslant 0.5 $
    3级(勉强)$ 0.70 \leqslant p \lt 0.80 $$ 0.5 \lt C \leqslant 0.65 $
    4级(不合格)$ p \lt 0.70 $$ C \gt 0.65 $
    下载: 导出CSV

    表  2  MEMS仪表性能指标参数

    Table  2.   Property index parameters of MEMS

    MEMS陀螺仪MEMS加速度计GPS
    量程/
    ((°)·s−1
    零偏/
    ((°)·s−1
    零偏稳定性/
    ((°)·s−1
    零偏重复性/
    ((°)·s−1
    量程零偏零偏稳定性零偏重复性授时精度/
    ns
    位置精度
    (CEP DGPS)/m
    速度精度/
    (m·s−1
    数据更新率/
    Hz
     注:CEP为原概率偏差,DGPS是差分GPS工作模式。
    下载: 导出CSV

    表  3  380~410 s位置误差统计

    Table  3.   Statistics of location error among 380~410 s m

    双测状态经度纬度高度
    均值SD均值SD均值SD
    卫星正常 0.208181.0587−0.25183 1.19667−0.37409 1.21927
    卫星不足−6.8538314.33106−0.98421 4.06205−6.5139313.87575
    观测量预测 0.81243 2.37502−0.72929 1.89076 0.25046 1.31343
    下载: 导出CSV

    表  4  380~410 s速度误差统计

    Table  4.   Statistics of speed error among 380~410 s m/s

    双测状态${V_{\rm{E}}}$${V_{\rm{N}}}$${V_{\rm{U}}}$
    均值SD均值SD均值SD
    卫星正常0.017270.04224−0.004260.05191−0.002910.02113
    卫星不足0.007960.12605−0.066870.44914−0.023720.14846
    观测量预测0.012210.06536 0.005640.09993 0.008350.05092
    下载: 导出CSV

    表  5  伪松组合导航下的最大位置误差

    Table  5.   Maximum position error under pseudo loosely-integrated navigation

    参数时刻/s
    5 101520 253035404550
    最大误差/m3.64.15.0 6.27.69.212.215.719.823.9
    下载: 导出CSV

    表  6  卫星失效范围内速度误差统计

    Table  6.   Statistics of speed error among satellite failure ramge m/s

    实验${V_{\rm{E}}}$${V_{\rm{N}}}$
    均值SD均值SD
    实验23.253615.782392.635614.64385
    实验30.063270.095320.008630.10936
    下载: 导出CSV

    表  7  卫星失效范围内位置误差统计

    Table  7.   Statistics of location error among satellite failure ramge m

    实验经度纬度
    均值SD均值SD
    实验28.0600118.213675.3491810.40109
    实验31.01342 2.639261.01232 2.20167
    下载: 导出CSV
  • [1] 宋丽君, 李喆, 付强文, 等. 基于格网框架的极区SINS/GPS组合导航算法研究[J]. 系统仿真学报, 2019, 31(8): 1683-1691. doi: 10.16182/j.issn1004731x.joss.17-0270

    SONG L J, LI Z, FU Q W, et al. Research on SINS/GPS integrated navigation system based on grid reference frame for transpolar aircraft[J]. Journal of System Simulation, 2019, 31(8): 1683-1691(in Chinese). doi: 10.16182/j.issn1004731x.joss.17-0270
    [2] 龙腾, 穆荣军, 苏炳志, 等. 双天线GPS/MEMS-INS深组合导航方法研究[J]. 宇航学报, 2021, 42(1): 92-102. doi: 10.3873/j.issn.1000-1328.2021.01.010

    LONG T, MU R J, SU B Z, et al. Research on dual-antenna GPS/MEMS-INS deeply-integrated navigation approach[J]. Journal of Astronautics, 2021, 42(1): 92-102(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.01.010
    [3] HANSEN J M, JOHANSEN T A, SOKOLOVA N, et al. Nonlinear observer for tightly coupled integrated inertial navigation aided by RTK-GNSS measurements[J]. IEEE Transactions on Control Systems Technology, 2018, 27(3): 1084-1099.
    [4] BITAR N A, GAVRILOV A I. Comparative analysis of fusion algorithms in a loosely-coupled integrated navigation system on the basis of real data processing[J]. Gyroscopy and Navigation, 2019, 10(4): 231-244. doi: 10.1134/S2075108719040023
    [5] 张复建, 单斌, 杨波, 等. MIMU/GPS系统在卫星不足时的导航算法研究[J]. 现代防御技术, 2019, 47(2): 30-35. doi: 10.3969/j.issn.1009-086x.2019.02.06

    ZHANG F J, SHAN B, YANG B, et al. Research on the MIMU/GPS integrated navigation system under the condition of the lack of satellite[J]. Modern Defense Technology, 2019, 47(2): 30-35(in Chinese). doi: 10.3969/j.issn.1009-086x.2019.02.06
    [6] 刘崇锦. GNSS/INS组合导航定位数据处理算法研究[D]. 西安: 中国科学院国家授时中心, 2020.

    LIU C J. Research on data processing algorithm for GNSS/INS integrated navigation and positioning [D]. Xi’an: National Time Service Center, Chinese Academy of Sciences, 2020 (in Chinese).
    [7] 李哲, 刘强, 王箫杨. GPS/MEMS-IMU松耦合导航系统的设计[J]. 舰船电子工程, 2018, 38(12): 52-56. doi: 10.3969/j.issn.1672-9730.2018.12.013

    LI Z, LIU Q, WANG X Y. Design of GPSIMEMS-IMU loosely coupled navigation system[J]. Ship Electronic Engineering, 2018, 38(12): 52-56(in Chinese). doi: 10.3969/j.issn.1672-9730.2018.12.013
    [8] BALOCHIAN S, BALOOCHIAN H. Improving grey prediction model and its application in predicting the number of users of a public road transportation system[J]. Journal of Intelligent Systems, 2020, 30(1): 104-114. doi: 10.1515/jisys-2019-0082
    [9] 陈静, 陈友军. 近似非齐次指数递增序列的IANGM(1, 1, k)模型构造[J]. 统计与决策, 2020, 36(20): 24-27.

    CHEN J, CHEN Y J. Construction of IANGM(1, 1, k) model with approximate non-homogeneous exponential incremental sequence[J]. Statistics & Decision, 2020, 36(20): 24-27(in Chinese).
    [10] 梁松, 闫明, 陈卓, 等. 基于灰色估计和多项式变异理论的附件传动系统在随机载荷作用下的疲劳寿命预测[J]. 航空动力学报, 2020, 35(2): 432-439. doi: 10.13224/j.cnki.jasp.2020.02.022

    LIANG S, YAN M, CHEN Z, et al. Fatigue life prediction under random loading for accessory transmission system based on grey estimation and polynomial mutation theory[J]. Journal of Aerospace Power, 2020, 35(2): 432-439(in Chinese). doi: 10.13224/j.cnki.jasp.2020.02.022
    [11] URRUTIA J D, MENESES J L, ANTONIO G V A. Predicting future monthly electricity consumption in the philippines using markov-chain grey model[J]. Indian Journal of Science and Technology, 2019, 12(33): 1-44.
    [12] 吕明明, 刘荣忠, 侯远龙, 等. 一种光电跟踪平台共轴控制的目标运动滤波方法[J]. 兵工学报, 2019, 40(3): 548-554. doi: 10.3969/j.issn.1000-1093.2019.03.013

    LV M M, LIU R Z, HOU Y L, et al. A target motion filtering method for on-axis control of electro-optical tracking platform[J]. Acta Armamentarii, 2019, 40(3): 548-554(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.03.013
    [13] 吴发友, 王林峰, 翁其能. 灰色预测模型在隧道洞顶楔形体稳定性预测中的应用[J]. 计算机科学, 2019, 46(5): 327-330. doi: 10.11896/j.issn.1002-137X.2019.05.051

    WU F Y, WANG L F, WENG Q N. Application of grey prediction model in prediction of stability of wedge-shaped body of tunnel[J]. Computer Science, 2019, 46(5): 327-330(in Chinese). doi: 10.11896/j.issn.1002-137X.2019.05.051
    [14] 郑江涛, 李四海, 刘士明, 等. 基于惯导和激光雷达的采煤机定位方法[J]. 中国惯性技术学报, 2020, 28(5): 595-602. doi: 10.13695/j.cnki.12-1222/o3.2020.05.005

    ZHENG J T, LI S H, LIU S M, et al. Positioning method of a shearer based on inertial navigation and lidar[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 595-602(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2020.05.005
    [15] PANNEKOUCKE O, RICHARD M, AABARIBAOUNE M E, et al. A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective[J]. Nonlinear Processes in Geophysics, 2021, 28(1): 1-22. doi: 10.5194/npg-28-1-2021
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  15
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-08-22
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答