留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Q345钢两相流冲蚀实验研究

王志杰 姚军 熊家志 赵彦琳 常笑 董士刚

王志杰,姚军,熊家志,等. Q345钢两相流冲蚀实验研究[J]. 北京航空航天大学学报,2023,49(4):891-899 doi: 10.13700/j.bh.1001-5965.2021.0357
引用本文: 王志杰,姚军,熊家志,等. Q345钢两相流冲蚀实验研究[J]. 北京航空航天大学学报,2023,49(4):891-899 doi: 10.13700/j.bh.1001-5965.2021.0357
WANG Z J,YAO J,XIONG J Z,et al. Experimental research on erosion of Q345 steel under two-phase flow condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):891-899 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0357
Citation: WANG Z J,YAO J,XIONG J Z,et al. Experimental research on erosion of Q345 steel under two-phase flow condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):891-899 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0357

Q345钢两相流冲蚀实验研究

doi: 10.13700/j.bh.1001-5965.2021.0357
基金项目: 国家自然科学基金(51776225,51876221)
详细信息
    通讯作者:

    E-mail:ylzhao@cup.edu.cn

  • 中图分类号: V351.35;TK05

Experimental research on erosion of Q345 steel under two-phase flow condition

Funds: National Natural Science Foundation of China (51776225,51876221)
More Information
  • 摘要:

    冲蚀磨损广泛存在于民用、工业、军工等领域中,常导致设备受颗粒撞击形成不同程度的损伤。选用Q345钢开展液固两相流冲蚀实验,基于失重法和表面分析技术研究颗粒粒径、颗粒质量分数、冲蚀角度(15°~90°)、冲蚀时间等因素对冲蚀磨损的影响,并对冲蚀后的样品表面形貌特征进行分区。实验结果表明:随颗粒质量分数增大,冲蚀失重量上升的速率逐渐趋于平缓;3D形貌观测发现,颗粒质量分数高于0.1%后,材料表面全部受到了侵蚀,最大冲蚀深度降低;30°冲蚀角度附近Q345钢的质量损失最大,这与其较强的韧塑性有关。基于金相显微拍照分析,90° 射流冲击后样品表面分成3个区域,靠近喷嘴外边缘的2区内坑洞和犁沟数量最多,损伤最为严重,这与射流流场特性和颗粒分布有关。

     

  • 图 1  实验装置示意图

    Figure 1.  Diagram of experimental device

    图 2  2 h冲蚀量与颗粒粒径的关系

    Figure 2.  Relationship between erosion amount and particle size at 2 hours

    图 3  2 h冲蚀量与颗粒质量分数的关系

    Figure 3.  Relationship between erosion amount and particle concentration at 2 hours

    图 4  冲蚀角度90° ,颗粒粒径20~40目时不同质量分数颗粒冲蚀2 h后的材料3D表面形貌

    Figure 4.  3D surface topography of materials after 2 hours of erosion with different mass concentrations of particles at 90° of erosion angle and particle size of 20~40 mesh

    图 5  冲蚀角度90°,颗粒粒径20~40目时不同质量分数颗粒2 h后的最大冲蚀深度

    Figure 5.  Maximum erosion depth after 2 hours for particles of different mass concentrarion at an erosion angle of 90° and particle size of 20~40 mesh

    图 6  冲蚀角度90°样品表面损伤机理

    Figure 6.  Damage mechanism of sample surface with an erosion angle of 90°

    图 7  2 h时冲蚀量与冲蚀角度的关系

    Figure 7.  Relationship between erosion amount and erosion angle at 2 hours

    图 8  颗粒粒径40-60目,质量分数0.1%时不同冲蚀角度下2 h时3D表面形貌

    Figure 8.  Under condition of particle size 40-60 mesh and mass concentration 0.1%, different erosion angle 3D surface morphology for 2 hours

    图 9  颗粒粒径40~60目,质量分数0.1%,冲蚀角度90°下不同时间的金相拍照

    Figure 9.  Under condition of particle size 40-60 mesh and mass concentration 0.1%, metallographic photos at 90° erosion angle at different times

    图 10  颗粒粒径40~60目,质量分数0.1%,冲蚀角度90°下不同时间的冲蚀量

    Figure 10.  Under the condition of particle size 40-60 mesh and mass concentration 0.1%, erosion volume at 90° erosion angle at different time

    图 11  颗粒粒径40~60目,质量分数0.1%,冲蚀角度30°下样品表面形貌分区

    Figure 11.  Under the condition of particle size 40-60 mesh and mass concentration 0.1%, sample surface morphology partitioning at 30° erosion angle

    图 12  颗粒粒径40~60目,质量分数0.1%,冲蚀角度90°下样品表面形貌分区

    Figure 12.  Under the condition of particle size 40-60 mesh and mass concentration 0.1%, sample surface morphology partitioning at 90° erosion angle

    表  1  样品力学性能

    Table  1.   Sample mechanical properties of samples

    参数材料屈服强度/MPa布氏硬度/HB抗拉强度/MPa延伸率/%
    数值Q345345180490-63021
    下载: 导出CSV

    表  2  样品化学成分

    Table  2.   Sample chemical composition

    元素CSiCrNiPSMoFe
    含量/% 0.2 0.5 0.3 0.5 0.03 0.03 0.1 96.1
    下载: 导出CSV

    表  3  实验条件参数

    Table  3.   Experimental condition parameters

    参数数值
    颗粒材料SiO2
    颗粒质量分数/%0.01、0.05、0.1、0.3、0.5
    颗粒粒径/目20~40、40~60、60~80
    冲蚀角度/(°)15、30、45、60、75、90
    冲蚀温度/℃40~50
    喷嘴高度/mm50
    冲蚀时间/h0~24
    冲击速度/(m·s−110
    下载: 导出CSV

    表  4  表面形貌特征参数

    Table  4.   Surface topography characteristic parameters

    冲蚀角度/(°)分区平均长径比数量坑洞比例/%犁沟比例/%
    30 1区 1.29 54 63.5 36.5
    2区 1.69 12 25.7 74.3
    90 1区 1.11 51 90. 9.8
    2区 1.14 69 87.3 12.7
    3区 1.19 30 72.1 27.9
    下载: 导出CSV
  • [1] 赵彦琳, 杨少帅, 姚军. 304不锈钢两相流冲蚀腐蚀的实验研究[J]. 北京航空航天大学学报, 2019, 45(8): 1504-1511.

    ZHAO Y L, YANG S S, YAO J. Experimental study on erosion-corrosion of 304 stainless steel under two-phase flow condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1504-1511(in Chinese).
    [2] 马志宏, 李运泽, 张华, 等. 砂尘环境试验设备中颗粒浓度场的实验研究[J]. 北京航空航天大学学报, 2005, 31(8): 884-887. doi: 10.3969/j.issn.1001-5965.2005.08.012

    MA Z H, LI Y Z, ZHANG H, et al. Experimental study on particle concentration in sand and dust equipment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(8): 884-887(in Chinese). doi: 10.3969/j.issn.1001-5965.2005.08.012
    [3] 张超, 方鑫, 刘建春. 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707.

    ZHANG C, FANG X, LIU J C. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707(in Chinese).
    [4] 何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6): 1733-1743.

    HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1733-1743(in Chinese).
    [5] PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108. doi: 10.1007/s11668-011-9531-3
    [6] 姚军, 曹培根, 周芳, 等. 两相流冲蚀不锈钢材料的实验研究[J]. 厦门大学学报(自然科学版), 2015, 54(5): 746-750.

    YAO J, CAO P G, ZHOU F, et al. Experimental investigation of the erosion-corrosion of stainless steel by two-phase flow jets[J]. Journal of Xiamen University (Natural Science), 2015, 54(5): 746-750(in Chinese).
    [7] ZHAO Y L, TANG C Y, YAO J, et al. Investigation of erosion behavior of 304 stainless steel under solid-liquid jet flow impinging at 30°[J]. Petroleum Science, 2020, 17(4): 1135-1150. doi: 10.1007/s12182-020-00473-7
    [8] LIU Y F, ZHAO Y L, YAO J. Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement[J]. Wear, 2021, 466-467: 203572. doi: 10.1016/j.wear.2020.203572
    [9] MOLINA N, WALCZAK M, MICHALCZEWSKI R. Erosion under turbulent slurry flow: An experimental determination of particle impact angle, impact direction, and distribution thereof by image processing[J]. Wear, 2020, 454-455: 203302. doi: 10.1016/j.wear.2020.203302
    [10] MOLINA N, WALCZAK M, KALBARCZYK M, et al. Erosion under turbulent slurry flow: Effect of particle size in determining impact velocity and wear correlation by inverse analysis[J]. Wear, 2021, 474-475: 203651. doi: 10.1016/j.wear.2021.203651
    [11] YAO J, ZHOU F, ZHAO Y L, et al. Investigation of erosion of stainless steel by two-phase jet impingement[J]. Applied Thermal Engineering, 2015, 88: 353-362. doi: 10.1016/j.applthermaleng.2014.08.056
    [12] ELEMUREN R, TAMSAKI A, EVITTS R, et al. Erosion-corrosion of 90° AISI 1018 steel elbows in potash slurry: Effect of particle concentration on surface roughness[J]. Wear, 2019, 430-431: 37-49. doi: 10.1016/j.wear.2019.04.014
    [13] ZHAO Y L, ZHOU F, YAO J, et al. Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement[J]. Wear, 2015, 328-329: 464-474. doi: 10.1016/j.wear.2015.03.017
    [14] TANG E L, WANG J R, HAN Y F, et al. Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity[J]. Journal of Materials Research and Technology, 2019, 8(6): 5671-5686. doi: 10.1016/j.jmrt.2019.09.035
    [15] 刘建华, 李松梅, 杨应广, 等. A3钢在厌氧环境中的新型缓蚀剂性能研究[J]. 北京航空航天大学学报, 2000, 26(6): 624-627. doi: 10.3969/j.issn.1001-5965.2000.06.002

    LIU J H, LI S M, YANG Y G, et al. Novel inhibitors of microbiologically inducing corrosion of A3 steel in anaerobic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(6): 624-627(in Chinese). doi: 10.3969/j.issn.1001-5965.2000.06.002
    [16] 杜娟, 李松梅, 刘建华, 等. 氧化硫硫杆菌和芽孢杆菌协作下Q235钢腐蚀行为[J]. 北京航空航天大学学报, 2014, 40(1): 31-38.

    DU J, LI S M, LIU J H, et al. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 31-38(in Chinese).
    [17] 赵彦琳, 柳灏, 姬忠礼, 等. 316不锈钢在含沙两相射流中长时间冲蚀的实验研究[J]. 工程热物理学报, 2018, 39(2): 361-365.

    ZHAO Y L, LIU H, JI Z L, et al. Experimental investigation of long time erosion behavior of 316 stainless steel by sand-water flow jet impingement[J]. Journal of Engineering Thermophysics, 2018, 39(2): 361-365(in Chinese).
    [18] American Society for Testing and Materials. Standard guide for examination and evaluation of pitting corrosion: ASTM G46-94[S]. West Conshohocken: American Society for Testing and Materials, 2003.
    [19] CLARK H M. The influence of the flow field in slurry erosion[J]. Wear, 1992, 152(2): 223-240.
    [20] 曾子华, 姚军, 周芳, 等. 液固两相射流中304不锈钢冲蚀行为研究[J]. 工程热物理学报, 2019, 40(12): 2853-2858.

    ZENG Z H, YAO J, ZHOU F, et al. Investigation of particle impact on 304SS under the liquid-solid two phase flow[J]. Journal of Engineering Thermophysics, 2019, 40(12): 2853-2858(in Chinese).
    [21] 姚军, 曾子华, 周芳, 等. 颗粒射流冲击材料行为研究[J]. 北京航空航天大学学报, 2017, 43(11): 2266-2272.

    YAO J, ZENG Z H, ZHOU F, et al. Investigation of behaviour of particle impact on material by impinging jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2266-2272(in Chinese).
    [22] 张伟浩. 两相射流及冲蚀的大涡模拟研究[D]. 北京: 中国石油大学(北京), 2021: 36-39.

    ZHANG W H. Large-eddy simulation of two-phase impinging jet and erosion[D]. Beijing: China University of Petroleum(Beijing), 2021: 36-39(in Chinese).
    [23] NGUYEN V B, NGUYEN Q B, LIU Z G, et al. A combined numerical-experimental study on the effect of surface evolution on the water-sand multiphase flow characteristics and the material erosion behavior[J]. Wear, 2014, 319(1-2): 96-109. doi: 10.1016/j.wear.2014.07.017
    [24] LI D B, FAN J R, LUO K, et al. Direct numerical simulation of a particle-laden low Reynolds number turbulent round jet[J]. International Journal of Multiphase Flow, 2011, 37(6): 539-554. doi: 10.1016/j.ijmultiphaseflow.2011.03.013
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  68
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 录用日期:  2021-08-13
  • 网络出版日期:  2021-08-29
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答