留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定时间收敛的三维制导控制一体化设计

张宽桥 周旋风 门星火 周含冰

张宽桥,周旋风,门星火,等. 固定时间收敛的三维制导控制一体化设计[J]. 北京航空航天大学学报,2023,49(4):842-852 doi: 10.13700/j.bh.1001-5965.2021.0360
引用本文: 张宽桥,周旋风,门星火,等. 固定时间收敛的三维制导控制一体化设计[J]. 北京航空航天大学学报,2023,49(4):842-852 doi: 10.13700/j.bh.1001-5965.2021.0360
ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0360
Citation: ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0360

固定时间收敛的三维制导控制一体化设计

doi: 10.13700/j.bh.1001-5965.2021.0360
基金项目: 国家自然科学基金(11904398)
详细信息
    通讯作者:

    E-mail:zhouhanbing116@163.com

  • 中图分类号: V448;TJ765

Three-dimensional integrated guidance and control design with fixed-time convergence

Funds: National Natural Science Foundation of China (11904398)
More Information
  • 摘要:

    针对终端角度约束、状态约束和控制受限问题,在三维空间内,提出一种固定时间收敛的导弹制导控制一体化设计方法。构建了带终端角度约束的制导控制系统三通道全耦合设计模型,采用固定时间收敛的滑模干扰观测器对一体化设计模型中的未知干扰进行估计和补偿。基于固定时间稳定性理论、终端滑模控制和反演控制方法等对制导控制系统进行一体化设计,并采用二阶指令滤波器对系统状态及控制指令进行约束。对所提方法的固定时间收敛特性进行证明,并给出具体的收敛时间表达式。通过导弹六自由度仿真,验证了所提方法的有效性和优越性。

     

  • 图 1  弹目相对运动关系

    Figure 1.  Relative motion of missile and target

    图 2  弹目运动轨迹

    Figure 2.  Motion trajectories of missile and target

    图 3  弹目视线倾角、偏角曲线和弹目相对距离

    Figure 3.  LOS elevation angles, LOS azimuth angles and relative distances of missile and target

    图 4  攻角、侧滑角和滚转角

    Figure 4.  Attack, sideslip and roll angles

    图 5  滚转、偏航和俯仰角速度

    Figure 5.  Roll, yaw and pitch angular rates

    图 6  滚转、偏航和俯仰通道舵偏角

    Figure 6.  Roll, yaw and pitch channel rudder angles

    图 7  干扰观测器估计结果

    Figure 7.  Estimation results of disturbance observer

    图 8  第1类参数变化时的弹目视线倾角

    Figure 8.  LOS angles when the first class parameters change

    图 9  第2类参数变化时的弹目视线倾角

    Figure 9.  LOS angles when the second class parameters change

    图 10  第3类参数变化时的弹目视线倾角

    Figure 10.  LOS angles when the third class parameters change

    表  1  导弹动力学参数

    Table  1.   Missile dynamics parameters

    参数数值参数数值参数数值
    $m$/kg1200$m_{x1}^{\beta}$−0.38$C_y^{\beta}$−0.081
    $S$/m20.42$m_{x1}^{\delta_x}$2.13$C_y^{\delta_{\textit{z}}}$5.75
    $ L $/m20.69$m_{y1}^{\beta}$−27.30$C_{\textit{z}}^{\alpha}$0.09
    $J_{x1} $/(kg·m2)100$m_{y1}^{\delta_y}$−26.60$C_{\textit{z}}^{\beta}$−56.32
    $J_{y1} $/(kg·m2)5800$m_{{\textit{z}}1}^{\alpha}$−28.15$C_{\textit{z}}^{\delta_y}$−5.6
    $J_{{\textit{z}}1}$/(kg·m2)5700$m_{{\textit{z}}1}^{\delta_{\textit{z}}}$−27.90g/(m·s−2)9.8
    $m^\alpha_{x1} $0.45$C_y^{\alpha}$57.15$V_{\rm{m}}$/(m·s−1)600
    下载: 导出CSV

    表  2  不同一体化控制律的仿真结果

    Table  2.   Simulation results of different integrated control laws

    控制律攻击
    时间/s
    脱靶量/m视线倾角
    误差/(°)
    视线偏角
    误差/(°)
    RCIGC14.692.330.630.51
    FTIGC14.821.710.220.43
    本文方法14.770.710.050.04
    下载: 导出CSV
  • [1] WILLIAMS D E, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]//Proceedings of AIAA Guidance and Control Conference. Reston: AIAA, 1983: 57-66.
    [2] TAKESHI Y, BALAKRISHNAN S N. Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes[J]. Journal of the Franklin Institute, 2012, 349(2): 531-558. doi: 10.1016/j.jfranklin.2011.08.004
    [3] YAN H, TAN S P, HE Y Z. A small-gain method for integrated guidance and control in terminal phase of reentry[J]. Acta Astronautica, 2017, 132: 282-292. doi: 10.1016/j.actaastro.2016.12.027
    [4] XIN M, BALAKRISHNAN S N, OHLMEYER E J. Integrated guidance and control of missiles with θ-D method[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-992. doi: 10.1109/TCST.2006.876903
    [5] WANG Z K, MA J W, FU J T. Research on sliding mode method about three-dimensional integrated guidance and control for air-to-ground missile[J]. Journal of Aerospace Technology and Management, 2019, 11(1): 1-15.
    [6] SONG H T, ZHANG T, ZHANG G L. L1 adaptive state feedback controller for three-dimensional integrated guidance and control of interceptor[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(10): 1693-1701.
    [7] RAN M P, WANG Q, HOU D L, et al. Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J]. Chinese Journal of Aeronautics, 2014, 27(3): 634-642. doi: 10.1016/j.cja.2014.04.007
    [8] 张宽桥, 刘连照, 马晖, 等. 考虑攻击角约束和输入饱和的制导控制一体化设计[J]. 弹道学报, 2021, 33(3): 9-18. doi: 10.12115/j.issn.1004-499X(2021)03-002

    ZHANG K Q, LIU L Z, MA H, et al. Design on integrated guidance and control considering the constraint of impact angle and input saturation[J]. Journal of Ballistics, 2021, 33(3): 9-18(in Chinese). doi: 10.12115/j.issn.1004-499X(2021)03-002
    [9] SEYEDIPOUR S H, JEGARKANDI M F, SHAMAGHDARI S. Nonlinear integrated guidance and control based on adaptive backstepping scheme[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(3): 415-424. doi: 10.1108/AEAT-12-2014-0209
    [10] TIAN J Y, XIONG N, ZHANG S F, et al. Integrated guidance and control for missile with narrow field-of-view strapdown seeker[J]. ISA Transactions, 2020, 106: 124-137. doi: 10.1016/j.isatra.2020.06.012
    [11] ZHAO B, XU S Y, GUO J G, et al. Integrated strapdown missile guidance and control based on neural network disturbance observer[J]. Aerospace Science and Technology, 2019, 84: 170-181. doi: 10.1016/j.ast.2018.10.025
    [12] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83: 70-79. doi: 10.1016/j.ast.2018.08.028
    [13] SONG H T, ZHANG T. Fast robust integrated guidance and control design of interceptors[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 349-356. doi: 10.1109/TCST.2015.2431641
    [14] LAI C, WANG W H, LIU Z H, et al. Three-dimensional integrated guidance and control for terminal angle constrained attack against ground maneuvering target[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(7): 2393-2412. doi: 10.1177/0954410018778988
    [15] 梁晓玲. 控制受限的导引与控制一体化设计[D]. 哈尔滨: 哈尔滨工业大学, 2015: 7-10.

    LIANG X L. The integrated design method of guidance and control with control constraints[D]. Harbin: Harbin Institute of Technology, 2015: 7-10(in Chinese).
    [16] SAEED K, FARID S. Robust extended state observer-based three dimensional integrated guidance and control design for interceptors with impact angle and input saturation constraints[J]. ISA transactions, 2020, 104: 299-309. doi: 10.1016/j.isatra.2020.05.019
    [17] ZHANG D H, MA P, WANG S Y, et al. Multi-constraints adaptive finite-time integrated guidance and control design[J]. Aerospace Science and Technology, 2020, 107: 106334. doi: 10.1016/j.ast.2020.106334
    [18] CHONG Z Y, GUO J G, ZHAO B, et al. Finite-time integrated guidance and control system for hypersonic vehicles[J]. Transactions of the Institute of Measurement and Control, 2021, 43(4): 842-853. doi: 10.1177/0142331220941934
    [19] HE S M, WANG W, WANG J. Three-dimensional multivariable integrated guidance and control design for maneuvering targets interception[J]. Journal of the Franklin Institute, 2016, 353(16): 4330-4350. doi: 10.1016/j.jfranklin.2016.08.008
    [20] SHU Y J, TANG S. Integrated guidance and control backstepping design for blended control missile based on NDO[J]. Journal of Astronautics, 2013, 34(1): 79-85.
    [21] LIU X D, HUANG W W, DU L F. An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles[J]. ISA Transactions, 2017, 66: 164-175. doi: 10.1016/j.isatra.2016.10.008
    [22] HE S M, LIN D F, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41: 199-208. doi: 10.1016/j.ast.2014.11.020
    [23] NI J K, LIU L, LIU C X, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1): 401-420. doi: 10.1007/s11071-016-2897-8
    [24] WANG X, GUO J, TANG S J, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 88: 233-245. doi: 10.1016/j.isatra.2018.12.013
    [25] JIANG B Y, HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1892-1898. doi: 10.1109/TCST.2016.2519838
    [26] BASIN M, PANATHULA C B, SHTESSEL Y. Multivariable continuous fixed-time second-order sliding mode control: Design and convergence time estimation[J]. IET Control Theory & Applications, 2017, 11(8): 1104-1111.
    [27] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1315-1328. doi: 10.2514/1.20151
    [28] 张宽桥, 杨锁昌, 李宝晨, 等. 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报, 2019, 40(11): 323227. doi: 10.7527/S1000-6893.2019.23227

    ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 323227(in Chinese). doi: 10.7527/S1000-6893.2019.23227
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  88
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-04-19
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答