留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DM-DSC的舰载机着舰自动复飞控制算法

崔凯凯 韩维 刘玉杰 刘洁 褚达文 崔荣伟

崔凯凯,韩维,刘玉杰,等. 基于DM-DSC的舰载机着舰自动复飞控制算法[J]. 北京航空航天大学学报,2023,49(4):900-912 doi: 10.13700/j.bh.1001-5965.2021.0362
引用本文: 崔凯凯,韩维,刘玉杰,等. 基于DM-DSC的舰载机着舰自动复飞控制算法[J]. 北京航空航天大学学报,2023,49(4):900-912 doi: 10.13700/j.bh.1001-5965.2021.0362
CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0362
Citation: CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0362

基于DM-DSC的舰载机着舰自动复飞控制算法

doi: 10.13700/j.bh.1001-5965.2021.0362
基金项目: 国家自然科学基金(62003366)
详细信息
    通讯作者:

    E-mail:liuyexiaobao@163.com

  • 中图分类号: V249.12

Automatic wave-off control algorithm for carrier aircraft based on DM-DSC

Funds: National Natural Science Foundation of China (62003366)
More Information
  • 摘要:

    针对理想复飞轨迹已知条件下的舰载机自动复飞控制问题,提出一种基于偏差模型的动态面控制(DM-DSC)算法。基于Radau伪谱法给出了舰载机着舰的最优复飞轨迹;根据得到的最优复飞轨迹及其所对应的控制方案,分别给出了速度子系统和高度子系统的偏差控制模型和反演(Backstepping)控制器,并通过引入动态面结构来获得虚拟控制量的微分信号,避免了Backstepping控制律求解过程中的“微分膨胀”问题;考虑到气动参数的不确定性及舰尾流场的干扰,采用线性扩张状态观测器(LESO)对控制模型中的干扰项进行估计和补偿,并设计抗饱和辅助系统来抑制控制饱和的不利影响;最后,基于Lyapunov方法证明闭环系统信号的有界性。仿真结果表明:所提算法具有良好的控制性能。

     

  • 图 1  舰载机着舰复飞示意图

    Figure 1.  Wave-off diagram of carrier aircraft

    图 2  自动复飞控制系统结构示意图

    Figure 2.  Diagram of automatic wave-off control system

    图 3  水平和垂直方向舰尾流强度

    Figure 3.  Horizontal and vertical intensity of carrier air wake

    图 4  速度子系统跟踪控制误差

    Figure 4.  Tracking control errors of speed subsystem

    图 5  高度子系统跟踪控制结果

    Figure 5.  Tracking control results of altitude subsystem

    图 6  高度子系统跟踪控制误差

    Figure 6.  Tracking control errors of altitude subsystem

    图 7  控制系统油门输入

    Figure 7.  Throttle input of control system

    图 8  发动机油门输出响应

    Figure 8.  Output response of engine thrust

    图 9  控制系统舵偏角输入

    Figure 9.  Elevator deflection input of control system

    图 10  舵偏角输入变化率

    Figure 10.  Rate of change of elevator deflection input

    图 11  抗饱和系统的补偿信号

    Figure 11.  Compensation signal of anti-saturation system

    图 12  未知干扰的估计结果

    Figure 12.  Estimation results of unknown disturbances

    图 13  LESO的估计误差

    Figure 13.  Estimation errors of LESO

    图 14  速度子系统跟踪控制结果

    Figure 14.  Tracking control results of speed subsystem

    表  1  舰载机状态/控制变量的容许范围

    Table  1.   Admissible ranges of state and control variables

    状态/控制变量$\alpha $/(°) $q$ ${\delta _{{P} } }$$ {\delta _{\text{e}}} $/(°)$ {\dot \delta _{\text{e}}} $/((°)·s−1)
    容许取值范围[1, 20][−1, 1][0, 1][−24, 10.5][−40, 40]
    下载: 导出CSV
  • [1] 焦晓辉, 陈胜杰, 王晓江. 舰载机复飞决策研究[J]. 航空科学技术, 2016, 27(8): 41-46.

    JIAO X H, CHEN S J, WANG X J. Research on wave-off decision of carrier-based aircraft[J]. Aeronautical Science & Technology, 2016, 27(8): 41-46(in Chinese).
    [2] 沈宏良, 龚正. 舰载飞机复飞决策与操纵研究[J]. 飞行力学, 2008, 26(5): 5-9.

    SHEN H L, GONG Z. Research on wave-off decision and control for carrier aircraft[J]. Flight Dynamics, 2008, 26(5): 5-9(in Chinese).
    [3] 焦鑫, 江驹, 王新华, 等. 舰载机综合复飞决策研究[J]. 飞行力学, 2012, 30(5): 405-409.

    JIAO X, JIANG J, WANG X H, et al. Research on comprehensive wave-off decision of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(5): 405-409(in Chinese).
    [4] 曲志刚. 基于小扰动动力学模型的舰载机复飞决策系统研究[J]. 青岛大学学报, 2010, 23(4): 52-56.

    QU Z G. Wave-off decision system based on small disturbance dynamics model[J]. Journal of Qingdao University, 2010, 23(4): 52-56(in Chinese).
    [5] 王宝宝, 龚华军, 王新华, 等. 舰载机智能复飞决策技术研究[J]. 飞行力学, 2010, 28(2): 42-45.

    WANG B B, GONG H J, WANG X H, et al. Study on intelligent wave-off decision techniques of carrier aircraft[J]. Flight Dynamics, 2010, 28(2): 42-45(in Chinese).
    [6] 杜洁. 舰载机复飞决策及操纵策略研究[D]. 南京: 南京航空航天大学, 2015: 39-47.

    DU J. Research on wave-off decision and manipulation strategy of carrier-based aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-47(in Chinese).
    [7] HU Q L, MENG Y, WANG C L, et al. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities[J]. Aerospace Science and Technology, 2018, 73: 289-299. doi: 10.1016/j.ast.2017.12.001
    [8] 路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11): 324737.

    LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 324737(in Chinese).
    [9] YU C J, JIANG J, ZHEN Z Y, et al. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties[J]. Aerospace Science and Technology, 2020, 107: 106244. doi: 10.1016/j.ast.2020.106244
    [10] ZHANG S, WANG Q, DONG C Y. A novel adaptive dynamic surface control scheme of hypersonic flight vehicles with thrust and actuator constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1362-1374. doi: 10.1177/0142331217690223
    [11] DONG C Y, LIU Y, WANG Q. Barrier lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96: 163-176. doi: 10.1016/j.isatra.2019.06.011
    [12] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3): 320287.

    WANG X, GUO J, TANG S J, et al. Robust nonsingular terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 320287(in Chinese).
    [13] ZHANG X Y, ZONG Q, DOU L Q, et al. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle[J]. Journal of the Franklin Institute, 2020, 357(13): 8543-8565. doi: 10.1016/j.jfranklin.2020.05.017
    [14] LIANG S, XU B, REN J R. Kalman-filter-based robust control for hypersonic flight vehicle with measurement noises[J]. Aerospace Science and Technology, 2021, 112: 106566. doi: 10.1016/j.ast.2021.106566
    [15] AN H, WANG C H, FIDAN B. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle[J]. Acta Astronautica, 2017, 139: 111-121. doi: 10.1016/j.actaastro.2017.06.026
    [16] HE N B, GAO Q, GUTIERREZ H, et al. Robust adaptive dynamic surface control for hypersonic vehicles[J]. Nonlinear Dynamics, 2018, 93(3): 1109-1120. doi: 10.1007/s11071-018-4248-4
    [17] 路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3): 970-978.

    LU Y, DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 970-978(in Chinese).
    [18] LEE S, KIM Y, LEE Y, et al. Robust-backstepping missile autopilot design considering time-varying parameters and uncertainty[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4269-4287. doi: 10.1109/TAES.2020.2990819
    [19] 刘敏, 徐世杰, 韩潮. 挠性航天器的退步直接自适应姿态跟踪控制[J]. 航空学报, 2012, 33(9): 1697-1705.

    LIU M, XU S J, HAN C. Direct adaptive attitude tracking control of flexible spacecraft based on backstepping method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1697-1705(in Chinese).
    [20] LIAN B H, BANG H. Momentum transfer-based attitude control of spacecraft with backstepping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 453-463. doi: 10.1109/TAES.2006.1642563
    [21] FAN Y G, LUTZE F H, CLIFF E M. Time-optimal lateral maneuvers of an aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1106-1112. doi: 10.2514/3.21511
    [22] GARG D, PATTERSON M, HAGER W W, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica, 2010, 46(11): 1843-1851. doi: 10.1016/j.automatica.2010.06.048
    [23] 蔡伟伟. 空天飞行器轨迹规划与控制研究[D]. 长沙: 国防科学技术大学, 2015: 20-35.

    CAI W W. Trajectory planning and control for aerospace vehicles[D]. Changsha: National University of Defense Technology, 2015: 20-35(in Chinese).
    [24] LU Y. Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle[J]. Chinese Journal of Aeronautics, 2021, 34(2): 396-406. doi: 10.1016/j.cja.2020.09.053
    [25] 董朝阳, 路遥, 王青. 高超声速飞行器指令滤波反演控制[J]. 宇航学报, 2016, 37(8): 957-963.

    DONG C Y, LU Y, WANG Q. Command filtered backstepping control for hypersonic vehicle[J]. Journal of Astronautics, 2016, 37(8): 957-963(in Chinese).
    [26] 程春华, 胡云安, 吴进华. 非仿射纯反馈非线性系统的自抗扰控制[J]. 自动化学报, 2014, 40(7): 1528-1536.

    CHENG C H, HU Y A, WU J H. Auto disturbance controller of non-affine nonlinear pure feedback systems[J]. Acta Automatica Sinica, 2014, 40(7): 1528-1536(in Chinese).
    [27] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2): 473-483.

    WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 473-483(in Chinese).
    [28] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580.

    CHEN Z Q, SUN M W, YANG R G. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica, 2013, 39(5): 574-580(in Chinese).
    [29] ZHENG Q, GAOL L Q, GAO Z Q. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]// 2007 46th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 3501-3506.
    [30] 张智, 朱齐丹, 张雯. 航母舰载机全自动引导着舰技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 44-53.

    ZHANG Z, ZHU Q D, ZHANG W. Automatic guided landing technology for carrier aircraft[M]. Harbin: Harbin Engineering University Press, 2016: 44-53(in Chinese).
    [31] 程志强, 朱纪洪, 袁夏明, 等. 推力矢量垂直短距飞机轨迹优化与控制[J]. 控制理论与应用, 2020, 37(1): 38-46. doi: 10.7641/CTA.2019.80515

    CHENG Z Q, ZHU J H, YUAN X M, et al. Trajectory optimization and control design for transition of thrust-vectored vertical and/or short take-off and landing aircraft[J]. Control Theory & Applications, 2020, 37(1): 38-46(in Chinese). doi: 10.7641/CTA.2019.80515
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  73
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 录用日期:  2021-09-30
  • 网络出版日期:  2021-11-02
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答