留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滤网孔径影响砂土径向渗透特性的试验研究

唐国航 王乃东 刘松涛 介玉新

唐国航,王乃东,刘松涛,等. 滤网孔径影响砂土径向渗透特性的试验研究[J]. 北京航空航天大学学报,2023,49(6):1516-1522 doi: 10.13700/j.bh.1001-5965.2021.0451
引用本文: 唐国航,王乃东,刘松涛,等. 滤网孔径影响砂土径向渗透特性的试验研究[J]. 北京航空航天大学学报,2023,49(6):1516-1522 doi: 10.13700/j.bh.1001-5965.2021.0451
TANG G H,WANG N D,LIU S T,et al. Experimental study on influence of filter mesh size on radial permeability of sand[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1516-1522 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0451
Citation: TANG G H,WANG N D,LIU S T,et al. Experimental study on influence of filter mesh size on radial permeability of sand[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1516-1522 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0451

滤网孔径影响砂土径向渗透特性的试验研究

doi: 10.13700/j.bh.1001-5965.2021.0451
基金项目: 国家自然科学基金(51978028)
详细信息
    通讯作者:

    E-mail:wangnd@buaa.edu.cn

  • 中图分类号: TV223.6;TV41

Experimental study on influence of filter mesh size on radial permeability of sand

Funds: National Natural Science Foundation of China (51978028)
More Information
  • 摘要:

    为了研究渗透破坏的机理,基于自行研发的径向渗透试验仪,开展了系列的不同滤网孔径条件下的砂土渗透破坏试验和砂土稳定渗透试验,研究了滤网孔径对砂土径向渗流特性的影响规律,分析了渗透试验过程中滤网孔径对渗透破坏的临界水头差、稳定渗流流速、土颗粒损失质量、土体径向渗透系数的影响。试验结果表明:滤网孔径对砂土的径向渗流特性具有重要影响;在渗透破坏试验中,减小滤网孔径可增大渗透破坏的临界水头差;在稳定渗透试验中,减小滤网孔径可有效降低砂土的渗透系数;同时土的细颗粒先于粗颗粒发生质量流失,仅当土颗粒的质量流失为零时,渗流流速才会达到最终稳定。

     

  • 图 1  径向渗透试验仪

    Figure 1.  Radial penetration tester

    图 2  试验土样

    Figure 2.  Test soil samples

    图 3  颗粒级配曲线

    Figure 3.  Particle gradation curve

    图 4  透水孔与滤网的平面分布

    Figure 4.  Horizontal distribution of permeable hole and filter

    图 5  滤网孔径d对临界水头差ΔH的影响

    Figure 5.  Influence of filter pore size d oncritical water head difference ΔH

    图 6  渗透破坏在土体内部形成的潜蚀孔洞

    Figure 6.  Subsurface erosion cavities formed by soil seepage failure

    图 7  不同水头差的渗流流速V、浊液颗粒流失速度V1和沉淀颗粒流失速度V2

    Figure 7.  Seapage velocity V, loss velocity V1 of nonsettleable particle and loss velocity V2 of settleable particle at different head heights

    图 8  滤网孔径对稳定渗流流速的影响

    Figure 8.  Influence of filter pore size on steady seepage velocity

    图 9  滤网孔径对土颗粒损失总质量的影响

    Figure 9.  Influence of filter pore size on total loss of soil particle

    图 10  滤网孔径对径向渗透系数的影响

    Figure 10.  Influence of filter pore size on radial permeability coefficient

    表  1  渗透破坏试验中的滤网孔径和丝径

    Table  1.   Pore diameter and wire diameter of filter selected for seepage failure tests mm

    滤网孔径滤网丝径
    30.5
    40.6
    50.7
    60.9
    81.2
    10
    下载: 导出CSV

    表  2  稳定渗透试验中的滤网孔径和丝径

    Table  2.   Pore diameter and wire diameter of filter selected for stable seepage tests mm

    滤网孔径滤网丝径
    0.0080.001
    0.0750.01
    0.250.04
    0.80.12
    1.40.21
    20.3
    30.5
    下载: 导出CSV

    表  3  稳定渗透试验的最终渗流流速和土颗粒损失总质量

    Table  3.   Final seepage velocity and total mass loss of soil particles in stable permeability tests

    滤网孔径/mm稳定渗流流速/(mL·min−1)土颗粒损失总质量/g
    水头差5 cm水头差10 cm水头差15 cm水头差5 cm水头差10 cm水头差15 cm
    0.0089335800.010.01
    0.075177213900.010.02
    0.2524962080.020.040.09
    0.8271062610.090.61.35
    1.4431644160.572.454.96
    2441844310.873.927.65
    3602205780.894.7810.78
    下载: 导出CSV

    表  4  不同水头差的稳定渗流状态条件下的渗透系数

    Table  4.   Permeability coefficient of steady seepage flow at different water head heights

    滤网孔径/mm渗透系数/(cm·s−1)
    水头差5 cm水头差10 cm水头差15 cm
    0.0080.001 730.001 580.001 23
    0.0750.003 350.003 450.002 96
    0.250.004 600.004 600.004 43
    0.80.005 070.005 080.005 56
    1.40.008 330.007 860.008 86
    20.008 550.008 860.009 00
    30.011 500.010 540.012 37
    下载: 导出CSV
  • [1] KE L, TAKAHASHI A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J]. Soils and Found, 2012, 52(4): 698-711. doi: 10.1016/j.sandf.2012.07.010
    [2] MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
    [3] 田大浪, 谢强, 宁越, 等. 间断级配砂砾石土的渗透变形试验研究[J]. 岩土力学, 2020, 41(11): 3663-3670. doi: 10.16285/j.rsm.2020.0253

    TIAN D L, XIE Q, NING Y, et al. Experimental investigation on seepage deformation of gap-graded sand-gravel soils[J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670(in Chinese). doi: 10.16285/j.rsm.2020.0253
    [4] SION P V, LUCA M, AVRAM M. Researches concerning the configuration of geotextiles in the execution of regulatory works in the riverbeds[J]. The Annals of "Dunarea de Jos" University of Galati. Fascicle IX, Metallurgy and Materials Science, 2020, 43(3): 54-60.
    [5] FANNIN J. Karl Terzaghi: From theory to practice in geotechnical filter design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 267-276. doi: 10.1061/(ASCE)1090-0241(2008)134:3(267)
    [6] 杨佩瑶, 王红雨, 张刚, 等. 不同反滤准则及其在宁南山区水库设计中的应用[J]. 水利水运工程学报, 2021(1): 86-94. doi: 10.12170/20191227001

    YANG P Y, WANG H Y, ZHANG G, et al. Different filter design criteria and their applications to reservoir design in mountainous areas of southern Ningxia[J]. Hydro-Science and Engineering, 2021(1): 86-94(in Chinese). doi: 10.12170/20191227001
    [7] 段国军, 张顺福, 介玉新. 滤网孔径和层数对反滤保土效果的影响分析[J]. 水利水电技术, 2020, 51(1): 39-45. doi: 10.13928/j.cnki.wrahe.2020.01.005

    DUAN G J, ZHANG S F, JIE Y X. Influence of pore size and filter layers on soil retention effect[J]. Water Resources and Hydropower Engineering, 2020, 51(1): 39-45(in Chinese). doi: 10.13928/j.cnki.wrahe.2020.01.005
    [8] 康顺祥, 陆世强. 天然滤层模型[J]. 防渗技术, 1997, 3(4): 1-5.

    KANG S X, LU S Q. Modal of natural filtering layer[J]. Technique of Seepage Prevention, 1997, 3(4): 1-5(in Chinese).
    [9] WATSON P D J, JOHN N W M. Geotextile filter design and simulated bridge formation at the soil-geotextile interface[J]. Geotextiles and Geomembranes, 1999, 17(5-6): 265-280. doi: 10.1016/S0266-1144(99)00013-8
    [10] 朱积军, 简鸿福, 吕辉. 反滤土工布淤堵对土坝渗流稳定影响分析[J]. 水利规划与设计, 2019(6): 99-101. doi: 10.3969/j.issn.1672-2469.2019.06.027

    ZHU J J, JIAN H F, LV H. Analysis of influence of anti-filter geotextiles silting on seepage stability of earth dam[J]. Water Resources Planning and Design, 2019(6): 99-101(in Chinese). doi: 10.3969/j.issn.1672-2469.2019.06.027
    [11] 唐正涛, 孙爱国, 熊荣军, 等. 模拟现场工况条件下的无纺布淤堵试验研究[J]. 水运工程, 2017(5): 87-91. doi: 10.3969/j.issn.1002-4972.2017.05.016

    TANG Z T, SUN A G, XIONG R J, et al. Clogging tests study on non-woven fabrics under simulated on-site operating conditions[J]. Port & Waterway Engineering, 2017(5): 87-91(in Chinese). doi: 10.3969/j.issn.1002-4972.2017.05.016
    [12] 杨春和, 李泽华, 冒海军, 等. 尾矿坝排渗系统淤堵机理试验研究[J]. 广西大学学报(自然科学版), 2019, 44(3): 845-854. doi: 10.13624/j.cnki.issn.1001-7445.2019.0845

    YANG C H, LI Z H, MAO H J, et al. Experimental study on the clogging mechanism of drainage system in tailings dam[J]. Journal of Guangxi University(Natural Science Edition), 2019, 44(3): 845-854(in Chinese). doi: 10.13624/j.cnki.issn.1001-7445.2019.0845
    [13] 邓惠森. 岩土层垂向渗透系数与径向渗透系数[J]. 工程勘察, 1993, 21(1): 44-45.

    DENG H S. The vertical permeability coefficient and radial permeability coefficient of strata[J]. Geotechnical Investigation and Surveying, 1993, 21(1): 44-45(in Chinese).
    [14] RICHARDS K S, REDDY K R. Experimental investigation of initiation of backward erosion piping in soils[J]. Géotechnique, 2012, 62(10): 933-942.
    [15] 殷延洲, 崔一飞, 刘定竺, 等. 松散土体中细颗粒运移的微观过程研究[J]. 工程科学与技术, 2019, 51(4): 21-29.

    YIN Y Z, CUI Y F, LIU D Z, et al. Study on microscopic process of fine particle migration in loose soil[J]. Advanced Engineering Sciences, 2019, 51(4): 21-29(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  57
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2021-12-23
  • 网络出版日期:  2022-01-10
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答