留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征运动观测的蝴蝶前飞规律及样机验证

张益鑫 王兴坚 王少萍 池小楷 杜韶阳

张益鑫,王兴坚,王少萍,等. 基于特征运动观测的蝴蝶前飞规律及样机验证[J]. 北京航空航天大学学报,2023,49(7):1651-1660 doi: 10.13700/j.bh.1001-5965.2021.0497
引用本文: 张益鑫,王兴坚,王少萍,等. 基于特征运动观测的蝴蝶前飞规律及样机验证[J]. 北京航空航天大学学报,2023,49(7):1651-1660 doi: 10.13700/j.bh.1001-5965.2021.0497
ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0497
Citation: ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0497

基于特征运动观测的蝴蝶前飞规律及样机验证

doi: 10.13700/j.bh.1001-5965.2021.0497
基金项目: 国家科技重大专项(2017-V-0010-0060);国家自然科学基金(51620105010,51805026,51675019);国家重点基础研究发展计划(JCKY2018601C107)
详细信息
    通讯作者:

    E-mail:wangshaoping@vip.sina.com

  • 中图分类号: V221;TH113

Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation

Funds: National Science and Technology Major Project (2017-V-0010-0060); National Natural Science Foundation of China (51620105010,51805026,51675019); National Basic Research Program of China (JCKY2018601C107)
More Information
  • 摘要:

    为了研究蝴蝶扑翼飞行的原理,研制低频扑翼的仿生器,通过蝴蝶飞行运动的生物学观测,提出蝴蝶的3种特征运动状态,分析扑翼运动、胸部俯仰运动及腹部摆动运动之间的相位关系,构建蝴蝶前飞运动学模型。基于“杆-膜”仿生翼的新工艺和定制的机载飞控系统,研制轻量化的仿生蝴蝶扑翼飞行器样机,研究蝴蝶样机的飞行控制策略。通过六维力传感器对样机做地面动力学测试,利用高速摄像机对样机飞行进行运动学跟踪,证明了基于特征运动状态的蝴蝶前飞规律和原理样机研制的有效性。

     

  • 图 1  蝴蝶扑翼模型坐标系统定义

    Figure 1.  Definition of coordinate system of butterfly flapping wing model

    图 2  蝴蝶飞行过程中的3种基本特征运动

    Figure 2.  Three basic movements of butterflies during flight

    图 3  观测蝴蝶飞行的高速摄像实验系统

    Figure 3.  A high-speed camera system for observing butterfly flight

    图 4  蝴蝶飞行运动中特征点跟踪结果

    Figure 4.  Tracking results of feature points in butterfly flight movement

    图 5  蝴蝶翼尖运动学随时间变化

    Figure 5.  Time-varying kinematics of butterfly wingtip

    图 6  蝴蝶胸腹关节G运动学随时间变化

    Figure 6.  Time-varying kinematics of butterfly joint G

    图 7  胸部俯仰角及腹部摆动角随时间变化

    Figure 7.  Time-varying of thorax pitch angle and abdominal swing angle

    图 8  仿生蝴蝶扑翼飞行器三维机械结构

    Figure 8.  3D mechanical structure of butterfly-inspired flapping wing air vehicle

    图 9  仿生翼制作工艺原理图

    Figure 9.  Schematic illustration of the bionic wing fabrication

    图 10  机载飞控电子系统结构示意图

    Figure 10.  Schematic diagram of onboard flight control electronic system

    图 11  基于姿态反馈的PD控制器框图

    Figure 11.  Block diagram of PD controller based on attitude feedback

    图 12  仿生蝴蝶俯仰及偏航运动控制示意图

    Figure 12.  Schematic diagram of pitch and yaw motion control of prototype

    图 13  样机地面动力学实验系统

    Figure 13.  Ground dynamics experiment system of prototype

    图 14  样机瞬时升力及推力曲线

    Figure 14.  Instantaneous lift and thrust of the prototype

    图 15  扑打频率对于扑翼气动性能的影响

    Figure 15.  Influence of flapping frequency on aerodynamic performance of flapping wings

    图 16  不同供电电压下样机升推力的测试结果

    Figure 16.  Test results of lift and thrust of prototype under different supply voltages

    图 17  样机飞行中特征点跟踪结果

    Figure 17.  Feature point tracking results during prototype flight

    图 18  样机前飞逐帧图像

    Figure 18.  Stroboscopic images of prototype during free forward flight

    表  1  样机物理参数

    Table  1.   Physical parameters of prototype

    参数数值
    翼展/cm62.0
    最大弦长/cm38.0
    扑打频率范围/Hz1.8~3.2
    前翼前掠角/(°)45
    前翼翼面积/cm2575.7
    后翼翼面积/cm2558.1
    最大平飞速度/(m·s−1)1.5
    起飞质量/g39.60
    下载: 导出CSV

    表  2  样机各组件质量分布

    Table  2.   Mass distribution of each component of prototype

    组件质量/g占比/%
    左右翼驱动舵机14.8037.37
    左翼7.5519.07
    右翼7.5118.96
    主碳纤维杆0.631.59
    机载飞控电子系统2.666.72
    微型航模电池5.3013.38
    线材0.852.15
    其他0.300.76
    下载: 导出CSV
  • [1] 孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1):201501.

    SUN M. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 201501 (in Chinese).
    [2] DUDLEY R. Biomechanics of flight in neotropical butterflies: Morphometries and kinematics[J]. Journal of Experimental Biology, 1990, 150(1): 37-53. doi: 10.1242/jeb.150.1.37
    [3] SRIDHAR M, KANG C K, LANDRUM D B. Beneficial effect of the coupled wing-body dynamics on power consumption in butterflies[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [4] TWIGG R, SRIDHAR M, POHLY J A, et al. Aeroelastic characterization of real and artificial monarch butterfly wings[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
    [5] BETTS C R, WOOTTON R. Wing shape and flight behaviour in butterflies (Lepidoptera: papilionoidea and hesperioidea): A preliminary analysis[J]. The Journal of Experimental Biology, 1988, 138: 271-288. doi: 10.1242/jeb.138.1.271
    [6] BRODSKY A K. Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution[J]. Journal of Experimental Biology, 1991, 161(1): 77. doi: 10.1242/jeb.161.1.77
    [7] DUDLEY R. Biomechanics of flight in neotropical butterflies: Aerodynamics and mechanical power requirements[J]. The Journal of Experimental Biology, 1991, 159: 335-357. doi: 10.1242/jeb.159.1.335
    [8] SRYGLEY R B, THOMAS A L R. Unconventional lift-generating mechanisms in free-flying butterflies[J]. Nature, 2002, 420(6916): 660-664. doi: 10.1038/nature01223
    [9] HUANG H, SUN M. Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations[J]. Acta Mechanica Sinica, 2012, 28(6): 1590-1601. doi: 10.1007/s10409-012-0209-1
    [10] IMURA T, FUCHIWAKI M, TANAKA K. Dynamic behaviors of butterfly wing and their application to micro flight robot[C]//Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting. New York: ASME, 2010: 1687-1694.
    [11] TANAKA H, SHIMOYAMA I. Forward flight of swallowtail butterfly with simple flapping motion[J]. Bioinspiration & Biomimetics, 2010, 5(2): 026003.
    [12] FUJIKAWA T, SATO Y, MAKATA ,et al. Development of a butterfly-style flapping robot with lead-lag mechanism using f;exible links(mechanical systems)[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Janpan Society of Mechanical Engineers, Part C, 2010, 76(700):2663-2670.
    [13] FUJIKAWA T, HIRAKAWA K, OKUMA S, et al. Development of a small flapping robot[J]. Mechanical Systems and Signal Processing, 2008, 22(6): 1304-1315. doi: 10.1016/j.ymssp.2008.01.008
    [14] FRONTZEK H, KNUBBEN E, MUGRAUER R, et al. eMotionbutterflies: Ultralight flying objects with collective behavior: FESTO Report 50058[R]. Esslingen: FESTO, 2015.
    [15] CHI X K, WANG S P, ZHANG Y X, et al. A tailless butterfly-type ornithopter with low aspect ratio wings[C]//CSAA/IET International Conference on Aircraft Utility Systems. London: IET, 2018: 1-6.
    [16] PHAN H V, AURECIANUS S, KANG T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism[J]. International Journal of Micro Air Vehicles, 2019, 11: 1756829319861371.
    [17] NGUYEN Q V, CHAN W L. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation[J]. Bioinspiration & Biomimetics, 2018, 14(1): 016015.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1558
  • HTML全文浏览量:  272
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-28
  • 录用日期:  2021-09-03
  • 网络出版日期:  2021-09-13
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答